diff options
author | Serge Steer <serge.steer@scilab.org> | 2006-11-20 15:56:54 +0000 |
---|---|---|
committer | Serge Steer <serge.steer@scilab.org> | 2006-11-20 15:56:54 +0000 |
commit | 9eb4d2536095d67af1621441f928e08c07862823 (patch) | |
tree | 47328fe5def7333af0177a3cbc45238c2a84307d /tests | |
parent | 6fe8ecdb5c9e5ec2fb2034d663ceb669fb56d99a (diff) | |
download | scilab-9eb4d2536095d67af1621441f928e08c07862823.zip scilab-9eb4d2536095d67af1621441f928e08c07862823.tar.gz |
add_edge generates an error due to uninitialized fields
Diffstat (limited to 'tests')
-rw-r--r-- | tests/basic_tests/metanet.dia.ref | 18170 |
1 files changed, 9212 insertions, 8958 deletions
diff --git a/tests/basic_tests/metanet.dia.ref b/tests/basic_tests/metanet.dia.ref index 1898412..5512250 100644 --- a/tests/basic_tests/metanet.dia.ref +++ b/tests/basic_tests/metanet.dia.ref | |||
@@ -1,8958 +1,9212 @@ | |||
1 | 1 | ||
2 | // Copyright INRIA | 2 | // Copyright INRIA |
3 | 3 | ||
4 | // add_edge | 4 | // add_edge |
5 | 5 | ||
6 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; | 6 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; |
7 | 7 | ||
8 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15]; | 8 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15]; |
9 | 9 | ||
10 | g=make_graph('foo',1,17,ta,he); | 10 | g=make_graph('foo',1,17,ta,he); |
11 | 11 | ||
12 | g=add_edge(1,7,g) | 12 | g=add_edge(1,7,g) |
13 | g = | 13 | g = |
14 | 14 | ||
15 | 15 | ||
16 | g(1) | 16 | g(1) |
17 | 17 | ||
18 | 18 | ||
19 | column 1 to 8 | 19 | column 1 to 8 |
20 | 20 | ||
21 | !graph name directed node_number tail head node_name node_type ! | 21 | !graph name directed node_number tail head node_name node_type ! |
22 | 22 | ||
23 | column 9 to 14 | 23 | column 9 to 14 |
24 | 24 | ||
25 | !node_x node_y node_color node_diam node_border node_font_size ! | 25 | !node_x node_y node_color node_diam node_border node_font_size ! |
26 | 26 | ||
27 | column 15 to 19 | 27 | column 15 to 19 |
28 | 28 | ||
29 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 29 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
30 | 30 | ||
31 | column 20 to 24 | 31 | column 20 to 24 |
32 | 32 | ||
33 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 33 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
34 | 34 | ||
35 | column 25 to 28 | 35 | column 25 to 28 |
36 | 36 | ||
37 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 37 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
38 | 38 | ||
39 | column 29 to 31 | 39 | column 29 to 31 |
40 | 40 | ||
41 | !default_node_border default_edge_width default_edge_hi_width ! | 41 | !default_node_border default_edge_width default_edge_hi_width ! |
42 | 42 | ||
43 | column 32 to 34 | 43 | column 32 to 34 |
44 | 44 | ||
45 | !default_font_size node_label edge_label ! | 45 | !default_font_size node_label edge_label ! |
46 | 46 | ||
47 | g(2) | 47 | g(2) |
48 | 48 | ||
49 | foo | 49 | foo |
50 | 50 | ||
51 | g(3) | 51 | g(3) |
52 | 52 | ||
53 | 1. | 53 | 1. |
54 | 54 | ||
55 | g(4) | 55 | g(4) |
56 | 56 | ||
57 | 17. | 57 | 17. |
58 | 58 | ||
59 | g(5) | 59 | g(5) |
60 | 60 | ||
61 | 61 | ||
62 | column 1 to 11 | 62 | column 1 to 11 |
63 | 63 | ||
64 | 1. 1. 2. 2. 2. 3. 4. 5. 5. 7. 8. | 64 | 1. 1. 2. 2. 2. 3. 4. 5. 5. 7. 8. |
65 | 65 | ||
66 | column 12 to 21 | 66 | column 12 to 21 |
67 | 67 | ||
68 | 8. 9. 10. 10. 10. 11. 12. 13. 13. 13. | 68 | 8. 9. 10. 10. 10. 11. 12. 13. 13. 13. |
69 | 69 | ||
70 | column 22 to 28 | 70 | column 22 to 28 |
71 | 71 | ||
72 | 14. 15. 16. 16. 17. 17. 1. | 72 | 14. 15. 16. 16. 17. 17. 1. |
73 | 73 | ||
74 | g(6) | 74 | g(6) |
75 | 75 | ||
76 | 76 | ||
77 | column 1 to 11 | 77 | column 1 to 11 |
78 | 78 | ||
79 | 2. 10. 3. 5. 7. 4. 2. 4. 6. 8. 6. | 79 | 2. 10. 3. 5. 7. 4. 2. 4. 6. 8. 6. |
80 | 80 | ||
81 | column 12 to 21 | 81 | column 12 to 21 |
82 | 82 | ||
83 | 9. 7. 7. 11. 15. 12. 13. 9. 10. 14. | 83 | 9. 7. 7. 11. 15. 12. 13. 9. 10. 14. |
84 | 84 | ||
85 | column 22 to 28 | 85 | column 22 to 28 |
86 | 86 | ||
87 | 11. 16. 1. 17. 14. 15. 7. | 87 | 11. 16. 1. 17. 14. 15. 7. |
88 | 88 | ||
89 | g(7) | 89 | g(7) |
90 | 90 | ||
91 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ! | 91 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ! |
92 | 92 | ||
93 | g(8) | 93 | g(8) |
94 | 94 | ||
95 | [] | 95 | [] |
96 | 96 | ||
97 | g(9) | 97 | g(9) |
98 | 98 | ||
99 | [] | 99 | [] |
100 | 100 | ||
101 | g(10) | 101 | g(10) |
102 | 102 | ||
103 | [] | 103 | [] |
104 | 104 | ||
105 | g(11) | 105 | g(11) |
106 | 106 | ||
107 | [] | 107 | [] |
108 | 108 | ||
109 | g(12) | 109 | g(12) |
110 | 110 | ||
111 | [] | 111 | [] |
112 | 112 | ||
113 | g(13) | 113 | g(13) |
114 | 114 | ||
115 | [] | 115 | [] |
116 | 116 | ||
117 | g(14) | 117 | g(14) |
118 | 118 | ||
119 | [] | 119 | [] |
120 | 120 | ||
121 | g(15) | 121 | g(15) |
122 | 122 | ||
123 | [] | 123 | [] |
124 | 124 | ||
125 | g(16) | 125 | g(16) |
126 | 126 | ||
127 | 127 | ||
128 | column 1 to 19 | 128 | column 1 to 19 |
129 | 129 | ||
130 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ! | 130 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ! |
131 | 131 | ||
132 | column 20 to 28 | 132 | column 20 to 28 |
133 | 133 | ||
134 | !20 21 22 23 24 25 26 27 28 ! | 134 | !20 21 22 23 24 25 26 27 28 ! |
135 | 135 | ||
136 | g(17) | 136 | g(17) |
137 | 137 | ||
138 | 138 | ||
139 | column 1 to 11 | 139 | column 1 to 11 |
140 | 140 | ||
141 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 141 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
142 | 142 | ||
143 | column 12 to 22 | 143 | column 12 to 22 |
144 | 144 | ||
145 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 145 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
146 | 146 | ||
147 | column 23 to 28 | 147 | column 23 to 28 |
148 | 148 | ||
149 | 1. 1. 1. 1. 1. 0. | 149 | 1. 1. 1. 1. 1. 0. |
150 | 150 | ||
151 | g(18) | 151 | g(18) |
152 | 152 | ||
153 | 153 | ||
154 | column 1 to 11 | 154 | column 1 to 11 |
155 | 155 | ||
156 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 156 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
157 | 157 | ||
158 | column 12 to 22 | 158 | column 12 to 22 |
159 | 159 | ||
160 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 160 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
161 | 161 | ||
162 | column 23 to 28 | 162 | column 23 to 28 |
163 | 163 | ||
164 | 1. 1. 1. 1. 1. 1. | 164 | 1. 1. 1. 1. 1. 1. |
165 | 165 | ||
166 | g(19) | 166 | g(19) |
167 | 167 | ||
168 | 168 | ||
169 | column 1 to 11 | 169 | column 1 to 11 |
170 | 170 | ||
171 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 171 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
172 | 172 | ||
173 | column 12 to 22 | 173 | column 12 to 22 |
174 | 174 | ||
175 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 175 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
176 | 176 | ||
177 | column 23 to 27 | 177 | column 23 to 28 |
178 | 178 | ||
179 | 1. 1. 1. 1. 1. | 179 | 1. 1. 1. 1. 1. 3. |
180 | 180 | ||
181 | g(20) | 181 | g(20) |
182 | 182 | ||
183 | 183 | ||
184 | column 1 to 11 | 184 | column 1 to 11 |
185 | 185 | ||
186 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 186 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
187 | 187 | ||
188 | column 12 to 22 | 188 | column 12 to 22 |
189 | 189 | ||
190 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 190 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
191 | 191 | ||
192 | column 23 to 28 | 192 | column 23 to 28 |
193 | 193 | ||
194 | 0. 0. 0. 0. 0. 8. | 194 | 0. 0. 0. 0. 0. 8. |
195 | 195 | ||
196 | g(21) | 196 | g(21) |
197 | 197 | ||
198 | [] | 198 | [] |
199 | 199 | ||
200 | g(22) | 200 | g(22) |
201 | 201 | ||
202 | [] | 202 | [] |
203 | 203 | ||
204 | g(23) | 204 | g(23) |
205 | 205 | ||
206 | [] | 206 | [] |
207 | 207 | ||
208 | g(24) | 208 | g(24) |
209 | 209 | ||
210 | [] | 210 | [] |
211 | 211 | ||
212 | g(25) | 212 | g(25) |
213 | 213 | ||
214 | [] | 214 | [] |
215 | 215 | ||
216 | g(26) | 216 | g(26) |
217 | 217 | ||
218 | [] | 218 | [] |
219 | 219 | ||
220 | g(27) | 220 | g(27) |
221 | 221 | ||
222 | [] | 222 | [] |
223 | 223 | ||
224 | g(28) | 224 | g(28) |
225 | 225 | ||
226 | 15. | 226 | 15. |
227 | 227 | ||
228 | g(29) | 228 | g(29) |
229 | 229 | ||
230 | 1. | 230 | 1. |
231 | 231 | ||
232 | g(30) | 232 | g(30) |
233 | 233 | ||
234 | 1. | 234 | 1. |
235 | 235 | ||
236 | g(31) | 236 | g(31) |
237 | 237 | ||
238 | [] | 238 | 3. |
239 | 239 | ||
240 | g(32) | 240 | g(32) |
241 | 241 | ||
242 | 8. | 242 | 8. |
243 | 243 | ||
244 | g(33) | 244 | g(33) |
245 | 245 | ||
246 | 246 | ||
247 | g(34) | 247 | g(34) |
248 | 248 | ||
249 | ! 28 ! | 249 | ! 28 ! |
250 | 250 | ||
251 | 251 | ||
252 | // add_node | 252 | // add_node |
253 | 253 | ||
254 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; | 254 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; |
255 | 255 | ||
256 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15]; | 256 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15]; |
257 | 257 | ||
258 | g=make_graph('foo',1,17,ta,he); | 258 | g=make_graph('foo',1,17,ta,he); |
259 | 259 | ||
260 | g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642]; | 260 | g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642]; |
261 | 261 | ||
262 | g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301]; | 262 | g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301]; |
263 | 263 | ||
264 | n=g('node_number'); | 264 | n=g('node_number'); |
265 | 265 | ||
266 | g1=add_node(g,[270 140]) | 266 | g1=add_node(g,[270 140]) |
267 | g1 = | 267 | g1 = |
268 | 268 | ||
269 | 269 | ||
270 | g1(1) | 270 | g1(1) |
271 | 271 | ||
272 | 272 | ||
273 | column 1 to 8 | 273 | column 1 to 8 |
274 | 274 | ||
275 | !graph name directed node_number tail head node_name node_type ! | 275 | !graph name directed node_number tail head node_name node_type ! |
276 | 276 | ||
277 | column 9 to 14 | 277 | column 9 to 14 |
278 | 278 | ||
279 | !node_x node_y node_color node_diam node_border node_font_size ! | 279 | !node_x node_y node_color node_diam node_border node_font_size ! |
280 | 280 | ||
281 | column 15 to 19 | 281 | column 15 to 19 |
282 | 282 | ||
283 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 283 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
284 | 284 | ||
285 | column 20 to 24 | 285 | column 20 to 24 |
286 | 286 | ||
287 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 287 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
288 | 288 | ||
289 | column 25 to 28 | 289 | column 25 to 28 |
290 | 290 | ||
291 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 291 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
292 | 292 | ||
293 | column 29 to 31 | 293 | column 29 to 31 |
294 | 294 | ||
295 | !default_node_border default_edge_width default_edge_hi_width ! | 295 | !default_node_border default_edge_width default_edge_hi_width ! |
296 | 296 | ||
297 | column 32 to 34 | 297 | column 32 to 34 |
298 | 298 | ||
299 | !default_font_size node_label edge_label ! | 299 | !default_font_size node_label edge_label ! |
300 | 300 | ||
301 | g1(2) | 301 | g1(2) |
302 | 302 | ||
303 | foo | 303 | foo |
304 | 304 | ||
305 | g1(3) | 305 | g1(3) |
306 | 306 | ||
307 | 1. | 307 | 1. |
308 | 308 | ||
309 | g1(4) | 309 | g1(4) |
310 | 310 | ||
311 | 18. | 311 | 18. |
312 | 312 | ||
313 | g1(5) | 313 | g1(5) |
314 | 314 | ||
315 | 315 | ||
316 | column 1 to 11 | 316 | column 1 to 11 |
317 | 317 | ||
318 | 1. 1. 2. 2. 2. 3. 4. 5. 5. 7. 8. | 318 | 1. 1. 2. 2. 2. 3. 4. 5. 5. 7. 8. |
319 | 319 | ||
320 | column 12 to 21 | 320 | column 12 to 21 |
321 | 321 | ||
322 | 8. 9. 10. 10. 10. 11. 12. 13. 13. 13. | 322 | 8. 9. 10. 10. 10. 11. 12. 13. 13. 13. |
323 | 323 | ||
324 | column 22 to 27 | 324 | column 22 to 27 |
325 | 325 | ||
326 | 14. 15. 16. 16. 17. 17. | 326 | 14. 15. 16. 16. 17. 17. |
327 | 327 | ||
328 | g1(6) | 328 | g1(6) |
329 | 329 | ||
330 | 330 | ||
331 | column 1 to 11 | 331 | column 1 to 11 |
332 | 332 | ||
333 | 2. 10. 3. 5. 7. 4. 2. 4. 6. 8. 6. | 333 | 2. 10. 3. 5. 7. 4. 2. 4. 6. 8. 6. |
334 | 334 | ||
335 | column 12 to 21 | 335 | column 12 to 21 |
336 | 336 | ||
337 | 9. 7. 7. 11. 15. 12. 13. 9. 10. 14. | 337 | 9. 7. 7. 11. 15. 12. 13. 9. 10. 14. |
338 | 338 | ||
339 | column 22 to 27 | 339 | column 22 to 27 |
340 | 340 | ||
341 | 11. 16. 1. 17. 14. 15. | 341 | 11. 16. 1. 17. 14. 15. |
342 | 342 | ||
343 | g1(7) | 343 | g1(7) |
344 | 344 | ||
345 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ! | 345 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ! |
346 | 346 | ||
347 | g1(8) | 347 | g1(8) |
348 | 348 | ||
349 | [] | 349 | [] |
350 | 350 | ||
351 | g1(9) | 351 | g1(9) |
352 | 352 | ||
353 | 353 | ||
354 | column 1 to 9 | 354 | column 1 to 9 |
355 | 355 | ||
356 | 283. 163. 63. 57. 164. 164. 273. 271. 339. | 356 | 283. 163. 63. 57. 164. 164. 273. 271. 339. |
357 | 357 | ||
358 | column 10 to 17 | 358 | column 10 to 17 |
359 | 359 | ||
360 | 384. 504. 513. 439. 623. 631. 757. 642. | 360 | 384. 504. 513. 439. 623. 631. 757. 642. |
361 | 361 | ||
362 | column 18 | 362 | column 18 |
363 | 363 | ||
364 | 270. | 364 | 270. |
365 | 365 | ||
366 | g1(10) | 366 | g1(10) |
367 | 367 | ||
368 | 368 | ||
369 | column 1 to 8 | 369 | column 1 to 8 |
370 | 370 | ||
371 | 59. 133. 223. 318. 227. 319. 221. 324. | 371 | 59. 133. 223. 318. 227. 319. 221. 324. |
372 | 372 | ||
373 | column 9 to 16 | 373 | column 9 to 16 |
374 | 374 | ||
375 | 432. 141. 209. 319. 428. 443. 187. 151. | 375 | 432. 141. 209. 319. 428. 443. 187. 151. |
376 | 376 | ||
377 | column 17 to 18 | 377 | column 17 to 18 |
378 | 378 | ||
379 | 301. 140. | 379 | 301. 140. |
380 | 380 | ||
381 | g1(11) | 381 | g1(11) |
382 | 382 | ||
383 | [] | 383 | [] |
384 | 384 | ||
385 | g1(12) | 385 | g1(12) |
386 | 386 | ||
387 | [] | 387 | [] |
388 | 388 | ||
389 | g1(13) | 389 | g1(13) |
390 | 390 | ||
391 | [] | 391 | [] |
392 | 392 | ||
393 | g1(14) | 393 | g1(14) |
394 | 394 | ||
395 | [] | 395 | [] |
396 | 396 | ||
397 | g1(15) | 397 | g1(15) |
398 | 398 | ||
399 | [] | 399 | [] |
400 | 400 | ||
401 | g1(16) | 401 | g1(16) |
402 | 402 | ||
403 | 403 | ||
404 | column 1 to 19 | 404 | column 1 to 19 |
405 | 405 | ||
406 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ! | 406 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ! |
407 | 407 | ||
408 | column 20 to 27 | 408 | column 20 to 27 |
409 | 409 | ||
410 | !20 21 22 23 24 25 26 27 ! | 410 | !20 21 22 23 24 25 26 27 ! |
411 | 411 | ||
412 | g1(17) | 412 | g1(17) |
413 | 413 | ||
414 | 414 | ||
415 | column 1 to 11 | 415 | column 1 to 11 |
416 | 416 | ||
417 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 417 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
418 | 418 | ||
419 | column 12 to 22 | 419 | column 12 to 22 |
420 | 420 | ||
421 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 421 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
422 | 422 | ||
423 | column 23 to 27 | 423 | column 23 to 27 |
424 | 424 | ||
425 | 1. 1. 1. 1. 1. | 425 | 1. 1. 1. 1. 1. |
426 | 426 | ||
427 | g1(18) | 427 | g1(18) |
428 | 428 | ||
429 | 429 | ||
430 | column 1 to 11 | 430 | column 1 to 11 |
431 | 431 | ||
432 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 432 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
433 | 433 | ||
434 | column 12 to 22 | 434 | column 12 to 22 |
435 | 435 | ||
436 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 436 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
437 | 437 | ||
438 | column 23 to 27 | 438 | column 23 to 27 |
439 | 439 | ||
440 | 1. 1. 1. 1. 1. | 440 | 1. 1. 1. 1. 1. |
441 | 441 | ||
442 | g1(19) | 442 | g1(19) |
443 | 443 | ||
444 | 444 | ||
445 | column 1 to 11 | 445 | column 1 to 11 |
446 | 446 | ||
447 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 447 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
448 | 448 | ||
449 | column 12 to 22 | 449 | column 12 to 22 |
450 | 450 | ||
451 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 451 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
452 | 452 | ||
453 | column 23 to 27 | 453 | column 23 to 27 |
454 | 454 | ||
455 | 1. 1. 1. 1. 1. | 455 | 1. 1. 1. 1. 1. |
456 | 456 | ||
457 | g1(20) | 457 | g1(20) |
458 | 458 | ||
459 | 459 | ||
460 | column 1 to 11 | 460 | column 1 to 11 |
461 | 461 | ||
462 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 462 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
463 | 463 | ||
464 | column 12 to 22 | 464 | column 12 to 22 |
465 | 465 | ||
466 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 466 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
467 | 467 | ||
468 | column 23 to 27 | 468 | column 23 to 27 |
469 | 469 | ||
470 | 0. 0. 0. 0. 0. | 470 | 0. 0. 0. 0. 0. |
471 | 471 | ||
472 | g1(21) | 472 | g1(21) |
473 | 473 | ||
474 | [] | 474 | [] |
475 | 475 | ||
476 | g1(22) | 476 | g1(22) |
477 | 477 | ||
478 | [] | 478 | [] |
479 | 479 | ||
480 | g1(23) | 480 | g1(23) |
481 | 481 | ||
482 | [] | 482 | [] |
483 | 483 | ||
484 | g1(24) | 484 | g1(24) |
485 | 485 | ||
486 | [] | 486 | [] |
487 | 487 | ||
488 | g1(25) | 488 | g1(25) |
489 | 489 | ||
490 | [] | 490 | [] |
491 | 491 | ||
492 | g1(26) | 492 | g1(26) |
493 | 493 | ||
494 | [] | 494 | [] |
495 | 495 | ||
496 | g1(27) | 496 | g1(27) |
497 | 497 | ||
498 | [] | 498 | [] |
499 | 499 | ||
500 | g1(28) | 500 | g1(28) |
501 | 501 | ||
502 | 15. | 502 | 15. |
503 | 503 | ||
504 | g1(29) | 504 | g1(29) |
505 | 505 | ||
506 | 1. | 506 | 1. |
507 | 507 | ||
508 | g1(30) | 508 | g1(30) |
509 | 509 | ||
510 | 1. | 510 | 1. |
511 | 511 | ||
512 | g1(31) | 512 | g1(31) |
513 | 513 | ||
514 | [] | 514 | 3. |
515 | 515 | ||
516 | g1(32) | 516 | g1(32) |
517 | 517 | ||
518 | 8. | 518 | 8. |
519 | 519 | ||
520 | g1(33) | 520 | g1(33) |
521 | 521 | ||
522 | 18 | 522 | 18 |
523 | 523 | ||
524 | g1(34) | 524 | g1(34) |
525 | 525 | ||
526 | ! ! | 526 | ! ! |
527 | 527 | ||
528 | 528 | ||
529 | // adj_lists | 529 | // adj_lists |
530 | 530 | ||
531 | ta=[2 3 3 5 3 4 4 5 8]; | 531 | ta=[2 3 3 5 3 4 4 5 8]; |
532 | 532 | ||
533 | he=[1 2 4 2 6 6 7 7 4]; | 533 | he=[1 2 4 2 6 6 7 7 4]; |
534 | 534 | ||
535 | g=make_graph('foo',1,8,ta,he); | 535 | g=make_graph('foo',1,8,ta,he); |
536 | 536 | ||
537 | [lp,la,ln]=adj_lists(1,g('node_number'),ta,he) | 537 | [lp,la,ln]=adj_lists(1,g('node_number'),ta,he) |
538 | ln = | 538 | ln = |
539 | 539 | ||
540 | 1. 2. 4. 6. 6. 7. 2. 7. 4. | 540 | 1. 2. 4. 6. 6. 7. 2. 7. 4. |
541 | la = | 541 | la = |
542 | 542 | ||
543 | 1. 2. 3. 5. 6. 7. 4. 8. 9. | 543 | 1. 2. 3. 5. 6. 7. 4. 8. 9. |
544 | lp = | 544 | lp = |
545 | 545 | ||
546 | 1. 1. 2. 5. 7. 9. 9. 9. 10. | 546 | 1. 1. 2. 5. 7. 9. 9. 9. 10. |
547 | 547 | ||
548 | 548 | ||
549 | // arc_graph | 549 | // arc_graph |
550 | 550 | ||
551 | ta=[1 1 2 4 4 5 6 7 2 3 5 1]; | 551 | ta=[1 1 2 4 4 5 6 7 2 3 5 1]; |
552 | 552 | ||
553 | he=[2 6 3 6 7 8 8 8 4 7 3 5]; | 553 | he=[2 6 3 6 7 8 8 8 4 7 3 5]; |
554 | 554 | ||
555 | g=make_graph('foo',1,8,ta,he); | 555 | g=make_graph('foo',1,8,ta,he); |
556 | 556 | ||
557 | g1=arc_graph(g) | 557 | g1=arc_graph(g) |
558 | g1 = | 558 | g1 = |
559 | 559 | ||
560 | 560 | ||
561 | g1(1) | 561 | g1(1) |
562 | 562 | ||
563 | 563 | ||
564 | column 1 to 8 | 564 | column 1 to 8 |
565 | 565 | ||
566 | !graph name directed node_number tail head node_name node_type ! | 566 | !graph name directed node_number tail head node_name node_type ! |
567 | 567 | ||
568 | column 9 to 14 | 568 | column 9 to 14 |
569 | 569 | ||
570 | !node_x node_y node_color node_diam node_border node_font_size ! | 570 | !node_x node_y node_color node_diam node_border node_font_size ! |
571 | 571 | ||
572 | column 15 to 19 | 572 | column 15 to 19 |
573 | 573 | ||
574 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 574 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
575 | 575 | ||
576 | column 20 to 24 | 576 | column 20 to 24 |
577 | 577 | ||
578 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 578 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
579 | 579 | ||
580 | column 25 to 28 | 580 | column 25 to 28 |
581 | 581 | ||
582 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 582 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
583 | 583 | ||
584 | column 29 to 31 | 584 | column 29 to 31 |
585 | 585 | ||
586 | !default_node_border default_edge_width default_edge_hi_width ! | 586 | !default_node_border default_edge_width default_edge_hi_width ! |
587 | 587 | ||
588 | column 32 to 34 | 588 | column 32 to 34 |
589 | 589 | ||
590 | !default_font_size node_label edge_label ! | 590 | !default_font_size node_label edge_label ! |
591 | 591 | ||
592 | g1(2) | 592 | g1(2) |
593 | 593 | ||
594 | foo | 594 | foo |
595 | 595 | ||
596 | g1(3) | 596 | g1(3) |
597 | 597 | ||
598 | 1. | 598 | 1. |
599 | 599 | ||
600 | g1(4) | 600 | g1(4) |
601 | 601 | ||
602 | 12. | 602 | 12. |
603 | 603 | ||
604 | g1(5) | 604 | g1(5) |
605 | 605 | ||
606 | 606 | ||
607 | column 1 to 11 | 607 | column 1 to 11 |
608 | 608 | ||
609 | 1. 1. 2. 3. 4. 5. 9. 9. 10. 11. 12. | 609 | 1. 1. 2. 3. 4. 5. 9. 9. 10. 11. 12. |
610 | 610 | ||
611 | column 12 | 611 | column 12 |
612 | 612 | ||
613 | 12. | 613 | 12. |
614 | 614 | ||
615 | g1(6) | 615 | g1(6) |
616 | 616 | ||
617 | 617 | ||
618 | column 1 to 11 | 618 | column 1 to 11 |
619 | 619 | ||
620 | 3. 9. 7. 10. 7. 8. 4. 5. 8. 10. 6. | 620 | 3. 9. 7. 10. 7. 8. 4. 5. 8. 10. 6. |
621 | 621 | ||
622 | column 12 | 622 | column 12 |
623 | 623 | ||
624 | 11. | 624 | 11. |
625 | 625 | ||
626 | g1(7) | 626 | g1(7) |
627 | 627 | ||
628 | !1 2 3 4 5 6 7 8 9 10 11 12 ! | 628 | !1 2 3 4 5 6 7 8 9 10 11 12 ! |
629 | 629 | ||
630 | g1(8) | 630 | g1(8) |
631 | 631 | ||
632 | [] | 632 | [] |
633 | 633 | ||
634 | g1(9) | 634 | g1(9) |
635 | 635 | ||
636 | [] | 636 | [] |
637 | 637 | ||
638 | g1(10) | 638 | g1(10) |
639 | 639 | ||
640 | [] | 640 | [] |
641 | 641 | ||
642 | g1(11) | 642 | g1(11) |
643 | 643 | ||
644 | [] | 644 | [] |
645 | 645 | ||
646 | g1(12) | 646 | g1(12) |
647 | 647 | ||
648 | [] | 648 | [] |
649 | 649 | ||
650 | g1(13) | 650 | g1(13) |
651 | 651 | ||
652 | [] | 652 | [] |
653 | 653 | ||
654 | g1(14) | 654 | g1(14) |
655 | 655 | ||
656 | [] | 656 | [] |
657 | 657 | ||
658 | g1(15) | 658 | g1(15) |
659 | 659 | ||
660 | [] | 660 | [] |
661 | 661 | ||
662 | g1(16) | 662 | g1(16) |
663 | 663 | ||
664 | !1 2 3 4 5 6 7 8 9 10 11 12 ! | 664 | !1 2 3 4 5 6 7 8 9 10 11 12 ! |
665 | 665 | ||
666 | g1(17) | 666 | g1(17) |
667 | 667 | ||
668 | 668 | ||
669 | column 1 to 11 | 669 | column 1 to 11 |
670 | 670 | ||
671 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 671 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
672 | 672 | ||
673 | column 12 | 673 | column 12 |
674 | 674 | ||
675 | 1. | 675 | 1. |
676 | 676 | ||
677 | g1(18) | 677 | g1(18) |
678 | 678 | ||
679 | 679 | ||
680 | column 1 to 11 | 680 | column 1 to 11 |
681 | 681 | ||
682 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 682 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
683 | 683 | ||
684 | column 12 | 684 | column 12 |
685 | 685 | ||
686 | 1. | 686 | 1. |
687 | 687 | ||
688 | g1(19) | 688 | g1(19) |
689 | 689 | ||
690 | 690 | ||
691 | column 1 to 11 | 691 | column 1 to 11 |
692 | 692 | ||
693 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 693 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
694 | 694 | ||
695 | column 12 | 695 | column 12 |
696 | 696 | ||
697 | 1. | 697 | 1. |
698 | 698 | ||
699 | g1(20) | 699 | g1(20) |
700 | 700 | ||
701 | 701 | ||
702 | column 1 to 11 | 702 | column 1 to 11 |
703 | 703 | ||
704 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 704 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
705 | 705 | ||
706 | column 12 | 706 | column 12 |
707 | 707 | ||
708 | 0. | 708 | 0. |
709 | 709 | ||
710 | g1(21) | 710 | g1(21) |
711 | 711 | ||
712 | [] | 712 | [] |
713 | 713 | ||
714 | g1(22) | 714 | g1(22) |
715 | 715 | ||
716 | [] | 716 | [] |
717 | 717 | ||
718 | g1(23) | 718 | g1(23) |
719 | 719 | ||
720 | [] | 720 | [] |
721 | 721 | ||
722 | g1(24) | 722 | g1(24) |
723 | 723 | ||
724 | [] | 724 | [] |
725 | 725 | ||
726 | g1(25) | 726 | g1(25) |
727 | 727 | ||
728 | [] | 728 | [] |
729 | 729 | ||
730 | g1(26) | 730 | g1(26) |
731 | 731 | ||
732 | [] | 732 | [] |
733 | 733 | ||
734 | g1(27) | 734 | g1(27) |
735 | 735 | ||
736 | [] | 736 | [] |
737 | 737 | ||
738 | g1(28) | 738 | g1(28) |
739 | 739 | ||
740 | 15. | 740 | 15. |
741 | 741 | ||
742 | g1(29) | 742 | g1(29) |
743 | 743 | ||
744 | 1. | 744 | 1. |
745 | 745 | ||
746 | g1(30) | 746 | g1(30) |
747 | 747 | ||
748 | 1. | 748 | 1. |
749 | 749 | ||
750 | g1(31) | 750 | g1(31) |
751 | 751 | ||
752 | [] | 752 | 3. |
753 | 753 | ||
754 | g1(32) | 754 | g1(32) |
755 | 755 | ||
756 | 8. | 756 | 8. |
757 | 757 | ||
758 | g1(33) | 758 | g1(33) |
759 | 759 | ||
760 | 760 | ||
761 | g1(34) | 761 | g1(34) |
762 | 762 | ||
763 | ! ! | 763 | ! ! |
764 | 764 | ||
765 | 765 | ||
766 | // arc_number | 766 | // arc_number |
767 | 767 | ||
768 | ta=[1 1 2 4 4 5 6 7 2 3 5 1]; | 768 | ta=[1 1 2 4 4 5 6 7 2 3 5 1]; |
769 | 769 | ||
770 | he=[2 6 3 6 7 8 8 8 4 7 3 5]; | 770 | he=[2 6 3 6 7 8 8 8 4 7 3 5]; |
771 | 771 | ||
772 | g=make_graph('foo',1,8,ta,he); | 772 | g=make_graph('foo',1,8,ta,he); |
773 | 773 | ||
774 | arc_number(g) | 774 | arc_number(g) |
775 | ans = | 775 | ans = |
776 | 776 | ||
777 | 12. | 777 | 12. |
778 | 778 | ||
779 | 779 | ||
780 | // articul | 780 | // articul |
781 | 781 | ||
782 | ta=[2 1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 14 15 16 17 17]; | 782 | ta=[2 1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 14 15 16 17 17]; |
783 | 783 | ||
784 | he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13 14 11 16 17 14 15]; | 784 | he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13 14 11 16 17 14 15]; |
785 | 785 | ||
786 | g=make_graph('foo',1,17,ta,he); | 786 | g=make_graph('foo',1,17,ta,he); |
787 | 787 | ||
788 | nart = articul(g) | 788 | nart = articul(g) |
789 | nart = | 789 | nart = |
790 | 790 | ||
791 | 10. | 791 | 10. |
792 | 792 | ||
793 | 793 | ||
794 | // bandwr | 794 | // bandwr |
795 | 795 | ||
796 | ta=[2 1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17]; | 796 | ta=[2 1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17]; |
797 | 797 | ||
798 | he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13 9 14 11 16 1 17 14 15]; | 798 | he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13 9 14 11 16 1 17 14 15]; |
799 | 799 | ||
800 | g=make_graph('foo',0,17,ta,he); | 800 | g=make_graph('foo',0,17,ta,he); |
801 | 801 | ||
802 | n=g('node_number'); | 802 | n=g('node_number'); |
803 | 803 | ||
804 | [lp,la,ln] = adj_lists(1,n,g('tail'),g('head')); | 804 | [lp,la,ln] = adj_lists(1,n,g('tail'),g('head')); |
805 | 805 | ||
806 | aa=graph_2_mat(g); | 806 | aa=graph_2_mat(g); |
807 | 807 | ||
808 | ij=[g('tail')' g('head')']; v=1*ones(g('tail')'); | 808 | ij=[g('tail')' g('head')']; v=1*ones(g('tail')'); |
809 | 809 | ||
810 | vv=sparse(ij,v,[n n]); | 810 | vv=sparse(ij,v,[n n]); |
811 | 811 | ||
812 | ww=tril(vv+vv')';ww=ww+eye(); | 812 | ww=tril(vv+vv')';ww=ww+eye(); |
813 | 813 | ||
814 | ww1=full(ww); | 814 | ww1=full(ww); |
815 | 815 | ||
816 | [iperm,mrepi,profil,ierr]=bandwr(ww) | 816 | [iperm,mrepi,profil,ierr]=bandwr(ww) |
817 | ierr = | 817 | ierr = |
818 | 818 | ||
819 | 0. | 819 | 0. |
820 | profil = | 820 | profil = |
821 | 821 | ||
822 | 822 | ||
823 | column 1 to 11 | 823 | column 1 to 11 |
824 | 824 | ||
825 | 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 825 | 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
826 | 826 | ||
827 | column 12 to 17 | 827 | column 12 to 17 |
828 | 828 | ||
829 | 1. 1. 1. 1. 1. 1. | 829 | 1. 1. 1. 1. 1. 1. |
830 | mrepi = | 830 | mrepi = |
831 | 831 | ||
832 | 832 | ||
833 | column 1 to 11 | 833 | column 1 to 11 |
834 | 834 | ||
835 | 3. 4. 5. 2. 6. 1. 7. 8. 16. 10. 9. | 835 | 3. 4. 5. 2. 6. 1. 7. 8. 16. 10. 9. |
836 | 836 | ||
837 | column 12 to 17 | 837 | column 12 to 17 |
838 | 838 | ||
839 | 17. 15. 11. 13. 14. 12. | 839 | 17. 15. 11. 13. 14. 12. |
840 | iperm = | 840 | iperm = |
841 | 841 | ||
842 | 842 | ||
843 | column 1 to 11 | 843 | column 1 to 11 |
844 | 844 | ||
845 | 6. 4. 1. 2. 3. 5. 7. 8. 11. 10. 14. | 845 | 6. 4. 1. 2. 3. 5. 7. 8. 11. 10. 14. |
846 | 846 | ||
847 | column 12 to 17 | 847 | column 12 to 17 |
848 | 848 | ||
849 | 17. 15. 16. 13. 9. 12. | 849 | 17. 15. 16. 13. 9. 12. |
850 | 850 | ||
851 | g2=g;g2('node_name')=string(iperm); | 851 | g2=g;g2('node_name')=string(iperm); |
852 | 852 | ||
853 | yy=0*ones(n,n); | 853 | yy=0*ones(n,n); |
854 | 854 | ||
855 | for i=1:n, for j=1:n, | 855 | for i=1:n, for j=1:n, |
856 | yy(i,j)=ww1(mrepi(i),mrepi(j));end;end; | 856 | yy(i,j)=ww1(mrepi(i),mrepi(j));end;end; |
857 | 857 | ||
858 | [ij,v,mn]=spget(ww); | 858 | [ij,v,mn]=spget(ww); |
859 | 859 | ||
860 | g1=make_graph('foo',0,n,ij(:,1)',ij(:,2)'); | 860 | g1=make_graph('foo',0,n,ij(:,1)',ij(:,2)'); |
861 | 861 | ||
862 | [lp,la,ln] = adj_lists(1,n,g1('tail'),g1('head')); | 862 | [lp,la,ln] = adj_lists(1,n,g1('tail'),g1('head')); |
863 | 863 | ||
864 | [iperm,mrepi,profil,ierr]=bandwr(lp,ln,n,0) | 864 | [iperm,mrepi,profil,ierr]=bandwr(lp,ln,n,0) |
865 | ierr = | 865 | ierr = |
866 | 866 | ||
867 | 0. | 867 | 0. |
868 | profil = | 868 | profil = |
869 | 869 | ||
870 | 870 | ||
871 | column 1 to 11 | 871 | column 1 to 11 |
872 | 872 | ||
873 | 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 873 | 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
874 | 874 | ||
875 | column 12 to 17 | 875 | column 12 to 17 |
876 | 876 | ||
877 | 1. 1. 1. 1. 1. 1. | 877 | 1. 1. 1. 1. 1. 1. |
878 | mrepi = | 878 | mrepi = |
879 | 879 | ||
880 | 880 | ||
881 | column 1 to 11 | 881 | column 1 to 11 |
882 | 882 | ||
883 | 3. 4. 5. 2. 6. 1. 7. 8. 16. 10. 9. | 883 | 3. 4. 5. 2. 6. 1. 7. 8. 16. 10. 9. |
884 | 884 | ||
885 | column 12 to 17 | 885 | column 12 to 17 |
886 | 886 | ||
887 | 17. 15. 11. 13. 14. 12. | 887 | 17. 15. 11. 13. 14. 12. |
888 | iperm = | 888 | iperm = |
889 | 889 | ||
890 | 890 | ||
891 | column 1 to 11 | 891 | column 1 to 11 |
892 | 892 | ||
893 | 6. 4. 1. 2. 3. 5. 7. 8. 11. 10. 14. | 893 | 6. 4. 1. 2. 3. 5. 7. 8. 11. 10. 14. |
894 | 894 | ||
895 | column 12 to 17 | 895 | column 12 to 17 |
896 | 896 | ||
897 | 17. 15. 16. 13. 9. 12. | 897 | 17. 15. 16. 13. 9. 12. |
898 | 898 | ||
899 | 899 | ||
900 | // best_match | 900 | // best_match |
901 | 901 | ||
902 | ta=[27 27 3 12 11 12 27 26 26 25 25 24 23 23 21 22 21 20 19 18 18]; | 902 | ta=[27 27 3 12 11 12 27 26 26 25 25 24 23 23 21 22 21 20 19 18 18]; |
903 | 903 | ||
904 | ta=[ta 16 15 15 14 12 9 10 6 9 17 8 17 10 20 11 23 23 12 18 28]; | 904 | ta=[ta 16 15 15 14 12 9 10 6 9 17 8 17 10 20 11 23 23 12 18 28]; |
905 | 905 | ||
906 | he=[ 1 2 2 4 5 11 13 1 25 22 24 22 22 19 13 13 14 16 16 9 16]; | 906 | he=[ 1 2 2 4 5 11 13 1 25 22 24 22 22 19 13 13 14 16 16 9 16]; |
907 | 907 | ||
908 | he=[he 10 10 11 12 2 6 5 5 7 8 7 9 6 11 4 18 13 3 28 17]; | 908 | he=[he 10 10 11 12 2 6 5 5 7 8 7 9 6 11 4 18 13 3 28 17]; |
909 | 909 | ||
910 | n=28; | 910 | n=28; |
911 | 911 | ||
912 | g=make_graph('foo',0,n,ta,he); | 912 | g=make_graph('foo',0,n,ta,he); |
913 | 913 | ||
914 | [card,match] = best_match(g) | 914 | [card,match] = best_match(g) |
915 | match = | 915 | match = |
916 | 916 | ||
917 | 917 | ||
918 | column 1 to 10 | 918 | column 1 to 10 |
919 | 919 | ||
920 | 26. 27. 12. 11. 6. 5. 8. 7. 18. 15. | 920 | 26. 27. 12. 11. 6. 5. 8. 7. 18. 15. |
921 | 921 | ||
922 | column 11 to 20 | 922 | column 11 to 20 |
923 | 923 | ||
924 | 4. 3. 22. 21. 10. 20. 28. 9. 23. 16. | 924 | 4. 3. 22. 21. 10. 20. 28. 9. 23. 16. |
925 | 925 | ||
926 | column 21 to 28 | 926 | column 21 to 28 |
927 | 927 | ||
928 | 14. 13. 19. 25. 24. 1. 2. 17. | 928 | 14. 13. 19. 25. 24. 1. 2. 17. |
929 | card = | 929 | card = |
930 | 930 | ||
931 | 14. | 931 | 14. |
932 | 932 | ||
933 | 933 | ||
934 | // chain_struct | 934 | // chain_struct |
935 | 935 | ||
936 | ta=[1 1 2 3 5 4 6 7 7 3 3 8 8 5]; | 936 | ta=[1 1 2 3 5 4 6 7 7 3 3 8 8 5]; |
937 | 937 | ||
938 | he=[2 3 5 4 6 6 7 4 3 2 8 1 7 4]; | 938 | he=[2 3 5 4 6 6 7 4 3 2 8 1 7 4]; |
939 | 939 | ||
940 | g=make_graph('foo',1,8,ta,he); | 940 | g=make_graph('foo',1,8,ta,he); |
941 | 941 | ||
942 | [lp,la,ln]=adj_lists(1,g('node_number'),ta,he); | 942 | [lp,la,ln]=adj_lists(1,g('node_number'),ta,he); |
943 | 943 | ||
944 | [fe,che,fn,chn] = chain_struct(lp,la,ln) | 944 | [fe,che,fn,chn] = chain_struct(lp,la,ln) |
945 | chn = | 945 | chn = |
946 | 946 | ||
947 | 947 | ||
948 | column 1 to 11 | 948 | column 1 to 11 |
949 | 949 | ||
950 | 3. 0. 0. 2. 4. 0. 0. 3. 0. 8. 0. | 950 | 3. 0. 0. 2. 4. 0. 0. 3. 0. 8. 0. |
951 | 951 | ||
952 | column 12 to 14 | 952 | column 12 to 14 |
953 | 953 | ||
954 | 7. 0. 0. | 954 | 7. 0. 0. |
955 | fn = | 955 | fn = |
956 | 956 | ||
957 | 2. 5. 4. 6. 6. 7. 4. 1. | 957 | 2. 5. 4. 6. 6. 7. 4. 1. |
958 | che = | 958 | che = |
959 | 959 | ||
960 | 960 | ||
961 | column 1 to 11 | 961 | column 1 to 11 |
962 | 962 | ||
963 | 2. 0. 0. 10. 14. 0. 0. 9. 0. 11. 0. | 963 | 2. 0. 0. 10. 14. 0. 0. 9. 0. 11. 0. |
964 | 964 | ||
965 | column 12 to 14 | 965 | column 12 to 14 |
966 | 966 | ||
967 | 13. 0. 0. | 967 | 13. 0. 0. |
968 | fe = | 968 | fe = |
969 | 969 | ||
970 | 1. 3. 4. 6. 5. 7. 8. 12. | 970 | 1. 3. 4. 6. 5. 7. 8. 12. |
971 | 971 | ||
972 | 972 | ||
973 | // check_graph | 973 | // check_graph |
974 | 974 | ||
975 | ta=[1 1 2 3 5 4 6 7 7 3 3 8 8 5]; | 975 | ta=[1 1 2 3 5 4 6 7 7 3 3 8 8 5]; |
976 | 976 | ||
977 | he=[2 3 5 4 6 6 7 4 3 2 8 1 7 4]; | 977 | he=[2 3 5 4 6 6 7 4 3 2 8 1 7 4]; |
978 | 978 | ||
979 | g=make_graph('foo',1,8,ta,he); | 979 | g=make_graph('foo',1,8,ta,he); |
980 | 980 | ||
981 | check_graph(g) | 981 | check_graph(g) |
982 | 982 | ||
983 | 983 | ||
984 | // circuit | 984 | // circuit |
985 | 985 | ||
986 | ta=[1 1 2 3 5 4 6 7 7 3 3 8 8 5]; | 986 | ta=[1 1 2 3 5 4 6 7 7 3 3 8 8 5]; |
987 | 987 | ||
988 | he=[2 3 5 4 6 6 7 4 3 2 8 1 7 4]; | 988 | he=[2 3 5 4 6 6 7 4 3 2 8 1 7 4]; |
989 | 989 | ||
990 | g=make_graph('foo',1,8,ta,he); | 990 | g=make_graph('foo',1,8,ta,he); |
991 | 991 | ||
992 | p=circuit(g) | 992 | p=circuit(g) |
993 | p = | 993 | p = |
994 | 994 | ||
995 | 2. 11. 12. | 995 | 2. 11. 12. |
996 | 996 | ||
997 | g=make_graph('foo',1,4,[1 2 2 3],[2 3 4 4]); | 997 | g=make_graph('foo',1,4,[1 2 2 3],[2 3 4 4]); |
998 | 998 | ||
999 | [p,r]=circuit(g) | 999 | [p,r]=circuit(g) |
1000 | r = | 1000 | r = |
1001 | 1001 | ||
1002 | 0. 1. 2. 3. | 1002 | 0. 1. 2. 3. |
1003 | p = | 1003 | p = |
1004 | 1004 | ||
1005 | [] | 1005 | [] |
1006 | 1006 | ||
1007 | 1007 | ||
1008 | // con_nodes | 1008 | // con_nodes |
1009 | 1009 | ||
1010 | ta=[1 1 2 2 2 3 4 4 5 7 7 9 10 12 12 13 13 14 15]; | 1010 | ta=[1 1 2 2 2 3 4 4 5 7 7 9 10 12 12 13 13 14 15]; |
1011 | 1011 | ||
1012 | he=[2 6 3 4 5 1 3 5 1 8 9 8 11 10 11 11 15 13 14]; | 1012 | he=[2 6 3 4 5 1 3 5 1 8 9 8 11 10 11 11 15 13 14]; |
1013 | 1013 | ||
1014 | g=make_graph('foo',1,15,ta,he); | 1014 | g=make_graph('foo',1,15,ta,he); |
1015 | 1015 | ||
1016 | con_nodes(2,g) | 1016 | con_nodes(2,g) |
1017 | ans = | 1017 | ans = |
1018 | 1018 | ||
1019 | 7. 8. 9. | 1019 | 7. 8. 9. |
1020 | 1020 | ||
1021 | 1021 | ||
1022 | // connex | 1022 | // connex |
1023 | 1023 | ||
1024 | ta=[1 1 2 2 2 3 4 4 5 6 7 7 7 8 9 10 12 12 13 13 14 15]; | 1024 | ta=[1 1 2 2 2 3 4 4 5 6 7 7 7 8 9 10 12 12 13 13 14 15]; |
1025 | 1025 | ||
1026 | he=[2 6 3 4 5 1 3 5 1 7 5 8 9 5 8 11 10 11 11 15 13 14]; | 1026 | he=[2 6 3 4 5 1 3 5 1 7 5 8 9 5 8 11 10 11 11 15 13 14]; |
1027 | 1027 | ||
1028 | g=make_graph('foo',1,15,ta,he); | 1028 | g=make_graph('foo',1,15,ta,he); |
1029 | 1029 | ||
1030 | [nc,ncomp]=connex(g) | 1030 | [nc,ncomp]=connex(g) |
1031 | ncomp = | 1031 | ncomp = |
1032 | 1032 | ||
1033 | 1033 | ||
1034 | column 1 to 11 | 1034 | column 1 to 11 |
1035 | 1035 | ||
1036 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. | 1036 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. |
1037 | 1037 | ||
1038 | column 12 to 15 | 1038 | column 12 to 15 |
1039 | 1039 | ||
1040 | 2. 2. 2. 2. | 1040 | 2. 2. 2. 2. |
1041 | nc = | 1041 | nc = |
1042 | 1042 | ||
1043 | 2. | 1043 | 2. |
1044 | 1044 | ||
1045 | 1045 | ||
1046 | // contract_edge | 1046 | // contract_edge |
1047 | 1047 | ||
1048 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; | 1048 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; |
1049 | 1049 | ||
1050 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; | 1050 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; |
1051 | 1051 | ||
1052 | g=make_graph('foo',1,17,ta,he); | 1052 | g=make_graph('foo',1,17,ta,he); |
1053 | 1053 | ||
1054 | g1=contract_edge(10,13,g) | 1054 | g1=contract_edge(10,13,g) |
1055 | g1 = | 1055 | g1 = |
1056 | 1056 | ||
1057 | 1057 | ||
1058 | g1(1) | 1058 | g1(1) |
1059 | 1059 | ||
1060 | 1060 | ||
1061 | column 1 to 8 | 1061 | column 1 to 8 |
1062 | 1062 | ||
1063 | !graph name directed node_number tail head node_name node_type ! | 1063 | !graph name directed node_number tail head node_name node_type ! |
1064 | 1064 | ||
1065 | column 9 to 14 | 1065 | column 9 to 14 |
1066 | 1066 | ||
1067 | !node_x node_y node_color node_diam node_border node_font_size ! | 1067 | !node_x node_y node_color node_diam node_border node_font_size ! |
1068 | 1068 | ||
1069 | column 15 to 19 | 1069 | column 15 to 19 |
1070 | 1070 | ||
1071 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 1071 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
1072 | 1072 | ||
1073 | column 20 to 24 | 1073 | column 20 to 24 |
1074 | 1074 | ||
1075 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 1075 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
1076 | 1076 | ||
1077 | column 25 to 28 | 1077 | column 25 to 28 |
1078 | 1078 | ||
1079 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 1079 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
1080 | 1080 | ||
1081 | column 29 to 31 | 1081 | column 29 to 31 |
1082 | 1082 | ||
1083 | !default_node_border default_edge_width default_edge_hi_width ! | 1083 | !default_node_border default_edge_width default_edge_hi_width ! |
1084 | 1084 | ||
1085 | column 32 to 34 | 1085 | column 32 to 34 |
1086 | 1086 | ||
1087 | !default_font_size node_label edge_label ! | 1087 | !default_font_size node_label edge_label ! |
1088 | 1088 | ||
1089 | g1(2) | 1089 | g1(2) |
1090 | 1090 | ||
1091 | foo | 1091 | foo |
1092 | 1092 | ||
1093 | g1(3) | 1093 | g1(3) |
1094 | 1094 | ||
1095 | 1. | 1095 | 1. |
1096 | 1096 | ||
1097 | g1(4) | 1097 | g1(4) |
1098 | 1098 | ||
1099 | 16. | 1099 | 16. |
1100 | 1100 | ||
1101 | g1(5) | 1101 | g1(5) |
1102 | 1102 | ||
1103 | 1103 | ||
1104 | column 1 to 11 | 1104 | column 1 to 11 |
1105 | 1105 | ||
1106 | 1. 1. 2. 2. 2. 3. 4. 5. 5. 7. 8. | 1106 | 1. 1. 2. 2. 2. 3. 4. 5. 5. 7. 8. |
1107 | 1107 | ||
1108 | column 12 to 21 | 1108 | column 12 to 21 |
1109 | 1109 | ||
1110 | 8. 9. 10. 10. 10. 11. 12. 10. 10. 13. | 1110 | 8. 9. 10. 10. 10. 11. 12. 10. 10. 13. |
1111 | 1111 | ||
1112 | column 22 to 26 | 1112 | column 22 to 26 |
1113 | 1113 | ||
1114 | 14. 15. 15. 16. 16. | 1114 | 14. 15. 15. 16. 16. |
1115 | 1115 | ||
1116 | g1(6) | 1116 | g1(6) |
1117 | 1117 | ||
1118 | 1118 | ||
1119 | column 1 to 11 | 1119 | column 1 to 11 |
1120 | 1120 | ||
1121 | 2. 10. 3. 5. 7. 4. 2. 4. 6. 8. 6. | 1121 | 2. 10. 3. 5. 7. 4. 2. 4. 6. 8. 6. |
1122 | 1122 | ||
1123 | column 12 to 21 | 1123 | column 12 to 21 |
1124 | 1124 | ||
1125 | 9. 7. 7. 11. 14. 12. 10. 9. 13. 11. | 1125 | 9. 7. 7. 11. 14. 12. 10. 9. 13. 11. |
1126 | 1126 | ||
1127 | column 22 to 26 | 1127 | column 22 to 26 |
1128 | 1128 | ||
1129 | 15. 1. 16. 13. 14. | 1129 | 15. 1. 16. 13. 14. |
1130 | 1130 | ||
1131 | g1(7) | 1131 | g1(7) |
1132 | 1132 | ||
1133 | !1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 ! | 1133 | !1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 ! |
1134 | 1134 | ||
1135 | g1(8) | 1135 | g1(8) |
1136 | 1136 | ||
1137 | [] | 1137 | [] |
1138 | 1138 | ||
1139 | g1(9) | 1139 | g1(9) |
1140 | 1140 | ||
1141 | [] | 1141 | [] |
1142 | 1142 | ||
1143 | g1(10) | 1143 | g1(10) |
1144 | 1144 | ||
1145 | [] | 1145 | [] |
1146 | 1146 | ||
1147 | g1(11) | 1147 | g1(11) |
1148 | 1148 | ||
1149 | [] | 1149 | [] |
1150 | 1150 | ||
1151 | g1(12) | 1151 | g1(12) |
1152 | 1152 | ||
1153 | [] | 1153 | [] |
1154 | 1154 | ||
1155 | g1(13) | 1155 | g1(13) |
1156 | 1156 | ||
1157 | [] | 1157 | [] |
1158 | 1158 | ||
1159 | g1(14) | 1159 | g1(14) |
1160 | 1160 | ||
1161 | [] | 1161 | [] |
1162 | 1162 | ||
1163 | g1(15) | 1163 | g1(15) |
1164 | 1164 | ||
1165 | [] | 1165 | [] |
1166 | 1166 | ||
1167 | g1(16) | 1167 | g1(16) |
1168 | 1168 | ||
1169 | 1169 | ||
1170 | column 1 to 19 | 1170 | column 1 to 19 |
1171 | 1171 | ||
1172 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 20 21 ! | 1172 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 20 21 ! |
1173 | 1173 | ||
1174 | column 20 to 26 | 1174 | column 20 to 26 |
1175 | 1175 | ||
1176 | !23 24 25 26 27 28 29 ! | 1176 | !23 24 25 26 27 28 29 ! |
1177 | 1177 | ||
1178 | g1(17) | 1178 | g1(17) |
1179 | 1179 | ||
1180 | 1180 | ||
1181 | column 1 to 11 | 1181 | column 1 to 11 |
1182 | 1182 | ||
1183 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1183 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1184 | 1184 | ||
1185 | column 12 to 22 | 1185 | column 12 to 22 |
1186 | 1186 | ||
1187 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1187 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1188 | 1188 | ||
1189 | column 23 to 26 | 1189 | column 23 to 26 |
1190 | 1190 | ||
1191 | 1. 1. 1. 1. | 1191 | 1. 1. 1. 1. |
1192 | 1192 | ||
1193 | g1(18) | 1193 | g1(18) |
1194 | 1194 | ||
1195 | 1195 | ||
1196 | column 1 to 11 | 1196 | column 1 to 11 |
1197 | 1197 | ||
1198 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1198 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1199 | 1199 | ||
1200 | column 12 to 22 | 1200 | column 12 to 22 |
1201 | 1201 | ||
1202 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1202 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1203 | 1203 | ||
1204 | column 23 to 26 | 1204 | column 23 to 26 |
1205 | 1205 | ||
1206 | 1. 1. 1. 1. | 1206 | 1. 1. 1. 1. |
1207 | 1207 | ||
1208 | g1(19) | 1208 | g1(19) |
1209 | 1209 | ||
1210 | 1210 | ||
1211 | column 1 to 11 | 1211 | column 1 to 11 |
1212 | 1212 | ||
1213 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1213 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1214 | 1214 | ||
1215 | column 12 to 22 | 1215 | column 12 to 22 |
1216 | 1216 | ||
1217 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1217 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1218 | 1218 | ||
1219 | column 23 to 26 | 1219 | column 23 to 26 |
1220 | 1220 | ||
1221 | 1. 1. 1. 1. | 1221 | 1. 1. 1. 1. |
1222 | 1222 | ||
1223 | g1(20) | 1223 | g1(20) |
1224 | 1224 | ||
1225 | 1225 | ||
1226 | column 1 to 11 | 1226 | column 1 to 11 |
1227 | 1227 | ||
1228 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 1228 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
1229 | 1229 | ||
1230 | column 12 to 22 | 1230 | column 12 to 22 |
1231 | 1231 | ||
1232 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 1232 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
1233 | 1233 | ||
1234 | column 23 to 26 | 1234 | column 23 to 26 |
1235 | 1235 | ||
1236 | 0. 0. 0. 0. | 1236 | 0. 0. 0. 0. |
1237 | 1237 | ||
1238 | g1(21) | 1238 | g1(21) |
1239 | 1239 | ||
1240 | [] | 1240 | [] |
1241 | 1241 | ||
1242 | g1(22) | 1242 | g1(22) |
1243 | 1243 | ||
1244 | [] | 1244 | [] |
1245 | 1245 | ||
1246 | g1(23) | 1246 | g1(23) |
1247 | 1247 | ||
1248 | [] | 1248 | [] |
1249 | 1249 | ||
1250 | g1(24) | 1250 | g1(24) |
1251 | 1251 | ||
1252 | [] | 1252 | [] |
1253 | 1253 | ||
1254 | g1(25) | 1254 | g1(25) |
1255 | 1255 | ||
1256 | [] | 1256 | [] |
1257 | 1257 | ||
1258 | g1(26) | 1258 | g1(26) |
1259 | 1259 | ||
1260 | [] | 1260 | [] |
1261 | 1261 | ||
1262 | g1(27) | 1262 | g1(27) |
1263 | 1263 | ||
1264 | [] | 1264 | [] |
1265 | 1265 | ||
1266 | g1(28) | 1266 | g1(28) |
1267 | 1267 | ||
1268 | 15. | 1268 | 15. |
1269 | 1269 | ||
1270 | g1(29) | 1270 | g1(29) |
1271 | 1271 | ||
1272 | 1. | 1272 | 1. |
1273 | 1273 | ||
1274 | g1(30) | 1274 | g1(30) |
1275 | 1275 | ||
1276 | 1. | 1276 | 1. |
1277 | 1277 | ||
1278 | g1(31) | 1278 | g1(31) |
1279 | 1279 | ||
1280 | [] | 1280 | 3. |
1281 | 1281 | ||
1282 | g1(32) | 1282 | g1(32) |
1283 | 1283 | ||
1284 | 8. | 1284 | 8. |
1285 | 1285 | ||
1286 | g1(33) | 1286 | g1(33) |
1287 | 1287 | ||
1288 | [] | 1288 | [] |
1289 | 1289 | ||
1290 | g1(34) | 1290 | g1(34) |
1291 | 1291 | ||
1292 | ! ! | 1292 | ! ! |
1293 | 1293 | ||
1294 | 1294 | ||
1295 | // convex_hull | 1295 | // convex_hull |
1296 | 1296 | ||
1297 | xx=[46 120 207 286 366 453 543 544 473 387 300 206 136 250 346 408]; | 1297 | xx=[46 120 207 286 366 453 543 544 473 387 300 206 136 250 346 408]; |
1298 | 1298 | ||
1299 | g('node_x')=[xx 527 443 306 326 196 139 264 55 58 46 118 513]; | 1299 | g('node_x')=[xx 527 443 306 326 196 139 264 55 58 46 118 513]; |
1300 | 1300 | ||
1301 | yy=[36 34 37 40 38 40 35 102 102 98 93 96 167 172 101 179]; | 1301 | yy=[36 34 37 40 38 40 35 102 102 98 93 96 167 172 101 179]; |
1302 | 1302 | ||
1303 | g('node_y')=[yy 198 252 183 148 172 256 259 258 167 109 104 253]; | 1303 | g('node_y')=[yy 198 252 183 148 172 256 259 258 167 109 104 253]; |
1304 | 1304 | ||
1305 | xy=[g('node_x');g('node_y')]; | 1305 | xy=[g('node_x');g('node_y')]; |
1306 | 1306 | ||
1307 | [nhull,ind] = convex_hull(xy) | 1307 | [nhull,ind] = convex_hull(xy) |
1308 | ind = | 1308 | ind = |
1309 | 1309 | ||
1310 | 17. 28. 23. 24. 26. 1. 2. 7. 8. | 1310 | 17. 28. 23. 24. 26. 1. 2. 7. 8. |
1311 | nhull = | 1311 | nhull = |
1312 | 1312 | ||
1313 | 9. | 1313 | 9. |
1314 | 1314 | ||
1315 | 1315 | ||
1316 | // cycle_basis | 1316 | // cycle_basis |
1317 | 1317 | ||
1318 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; | 1318 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; |
1319 | 1319 | ||
1320 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; | 1320 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; |
1321 | 1321 | ||
1322 | gt=make_graph('foo',1,17,ta,he); | 1322 | gt=make_graph('foo',1,17,ta,he); |
1323 | 1323 | ||
1324 | g=graph_simp(gt); | 1324 | g=graph_simp(gt); |
1325 | 1325 | ||
1326 | spc=cycle_basis(g) | 1326 | spc=cycle_basis(g) |
1327 | spc = | 1327 | spc = |
1328 | 1328 | ||
1329 | ( 11, 27) sparse matrix | 1329 | ( 11, 27) sparse matrix |
1330 | 1330 | ||
1331 | ( 1, 1) 2. | 1331 | ( 1, 1) 2. |
1332 | ( 1, 2) 4. | 1332 | ( 1, 2) 4. |
1333 | ( 1, 3) 3. | 1333 | ( 1, 3) 3. |
1334 | ( 2, 1) 3. | 1334 | ( 2, 1) 3. |
1335 | ( 2, 2) 6. | 1335 | ( 2, 2) 6. |
1336 | ( 2, 3) 5. | 1336 | ( 2, 3) 5. |
1337 | ( 3, 1) 8. | 1337 | ( 3, 1) 8. |
1338 | ( 3, 2) 10. | 1338 | ( 3, 2) 10. |
1339 | ( 3, 3) 9. | 1339 | ( 3, 3) 9. |
1340 | ( 3, 4) 7. | 1340 | ( 3, 4) 7. |
1341 | ( 3, 5) 5. | 1341 | ( 3, 5) 5. |
1342 | ( 4, 1) 1. | 1342 | ( 4, 1) 1. |
1343 | ( 4, 2) 8. | 1343 | ( 4, 2) 8. |
1344 | ( 4, 3) 11. | 1344 | ( 4, 3) 11. |
1345 | ( 4, 4) 17. | 1345 | ( 4, 4) 17. |
1346 | ( 4, 5) 18. | 1346 | ( 4, 5) 18. |
1347 | ( 4, 6) 13. | 1347 | ( 4, 6) 13. |
1348 | ( 5, 1) 1. | 1348 | ( 5, 1) 1. |
1349 | ( 5, 2) 5. | 1349 | ( 5, 2) 5. |
1350 | ( 5, 3) 7. | 1350 | ( 5, 3) 7. |
1351 | ( 5, 4) 9. | 1351 | ( 5, 4) 9. |
1352 | ( 5, 5) 12. | 1352 | ( 5, 5) 12. |
1353 | ( 5, 6) 17. | 1353 | ( 5, 6) 17. |
1354 | ( 5, 7) 18. | 1354 | ( 5, 7) 18. |
1355 | ( 5, 8) 13. | 1355 | ( 5, 8) 13. |
1356 | ( 6, 1) 1. | 1356 | ( 6, 1) 1. |
1357 | ( 6, 2) 8. | 1357 | ( 6, 2) 8. |
1358 | ( 6, 3) 14. | 1358 | ( 6, 3) 14. |
1359 | ( 6, 4) 13. | 1359 | ( 6, 4) 13. |
1360 | ( 7, 1) 15. | 1360 | ( 7, 1) 15. |
1361 | ( 7, 2) 16. | 1361 | ( 7, 2) 16. |
1362 | ( 7, 3) 19. | 1362 | ( 7, 3) 19. |
1363 | ( 7, 4) 18. | 1363 | ( 7, 4) 18. |
1364 | ( 8, 1) 13. | 1364 | ( 8, 1) 13. |
1365 | ( 8, 2) 15. | 1365 | ( 8, 2) 15. |
1366 | ( 8, 3) 20. | 1366 | ( 8, 3) 20. |
1367 | ( 8, 4) 25. | 1367 | ( 8, 4) 25. |
1368 | ( 8, 5) 27. | 1368 | ( 8, 5) 27. |
1369 | ( 8, 6) 23. | 1369 | ( 8, 6) 23. |
1370 | ( 9, 1) 13. | 1370 | ( 9, 1) 13. |
1371 | ( 9, 2) 18. | 1371 | ( 9, 2) 18. |
1372 | ( 9, 3) 21. | 1372 | ( 9, 3) 21. |
1373 | ( 9, 4) 25. | 1373 | ( 9, 4) 25. |
1374 | ( 9, 5) 27. | 1374 | ( 9, 5) 27. |
1375 | ( 9, 6) 23. | 1375 | ( 9, 6) 23. |
1376 | ( 10, 1) 13. | 1376 | ( 10, 1) 13. |
1377 | ( 10, 2) 22. | 1377 | ( 10, 2) 22. |
1378 | ( 10, 3) 24. | 1378 | ( 10, 3) 24. |
1379 | ( 10, 4) 23. | 1379 | ( 10, 4) 23. |
1380 | ( 11, 1) 13. | 1380 | ( 11, 1) 13. |
1381 | ( 11, 2) 22. | 1381 | ( 11, 2) 22. |
1382 | ( 11, 3) 26. | 1382 | ( 11, 3) 26. |
1383 | ( 11, 4) 27. | 1383 | ( 11, 4) 27. |
1384 | ( 11, 5) 23. | 1384 | ( 11, 5) 23. |
1385 | 1385 | ||
1386 | 1386 | ||
1387 | // delete_arcs | 1387 | // delete_arcs |
1388 | 1388 | ||
1389 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; | 1389 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; |
1390 | 1390 | ||
1391 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; | 1391 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; |
1392 | 1392 | ||
1393 | g=make_graph('foo',1,17,ta,he); | 1393 | g=make_graph('foo',1,17,ta,he); |
1394 | 1394 | ||
1395 | ij=[10 13;8 6;5 4;4 2]; | 1395 | ij=[10 13;8 6;5 4;4 2]; |
1396 | 1396 | ||
1397 | gt=delete_arcs(ij,g) | 1397 | gt=delete_arcs(ij,g) |
1398 | gt = | 1398 | gt = |
1399 | 1399 | ||
1400 | 1400 | ||
1401 | gt(1) | 1401 | gt(1) |
1402 | 1402 | ||
1403 | 1403 | ||
1404 | column 1 to 8 | 1404 | column 1 to 8 |
1405 | 1405 | ||
1406 | !graph name directed node_number tail head node_name node_type ! | 1406 | !graph name directed node_number tail head node_name node_type ! |
1407 | 1407 | ||
1408 | column 9 to 14 | 1408 | column 9 to 14 |
1409 | 1409 | ||
1410 | !node_x node_y node_color node_diam node_border node_font_size ! | 1410 | !node_x node_y node_color node_diam node_border node_font_size ! |
1411 | 1411 | ||
1412 | column 15 to 19 | 1412 | column 15 to 19 |
1413 | 1413 | ||
1414 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 1414 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
1415 | 1415 | ||
1416 | column 20 to 24 | 1416 | column 20 to 24 |
1417 | 1417 | ||
1418 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 1418 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
1419 | 1419 | ||
1420 | column 25 to 28 | 1420 | column 25 to 28 |
1421 | 1421 | ||
1422 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 1422 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
1423 | 1423 | ||
1424 | column 29 to 31 | 1424 | column 29 to 31 |
1425 | 1425 | ||
1426 | !default_node_border default_edge_width default_edge_hi_width ! | 1426 | !default_node_border default_edge_width default_edge_hi_width ! |
1427 | 1427 | ||
1428 | column 32 to 34 | 1428 | column 32 to 34 |
1429 | 1429 | ||
1430 | !default_font_size node_label edge_label ! | 1430 | !default_font_size node_label edge_label ! |
1431 | 1431 | ||
1432 | gt(2) | 1432 | gt(2) |
1433 | 1433 | ||
1434 | foo | 1434 | foo |
1435 | 1435 | ||
1436 | gt(3) | 1436 | gt(3) |
1437 | 1437 | ||
1438 | 1. | 1438 | 1. |
1439 | 1439 | ||
1440 | gt(4) | 1440 | gt(4) |
1441 | 1441 | ||
1442 | 17. | 1442 | 17. |
1443 | 1443 | ||
1444 | gt(5) | 1444 | gt(5) |
1445 | 1445 | ||
1446 | 1446 | ||
1447 | column 1 to 11 | 1447 | column 1 to 11 |
1448 | 1448 | ||
1449 | 1. 1. 2. 2. 2. 3. 5. 7. 8. 9. 10. | 1449 | 1. 1. 2. 2. 2. 3. 5. 7. 8. 9. 10. |
1450 | 1450 | ||
1451 | column 12 to 21 | 1451 | column 12 to 21 |
1452 | 1452 | ||
1453 | 10. 10. 11. 12. 13. 13. 13. 14. 15. 16. | 1453 | 10. 10. 11. 12. 13. 13. 13. 14. 15. 16. |
1454 | 1454 | ||
1455 | column 22 to 24 | 1455 | column 22 to 24 |
1456 | 1456 | ||
1457 | 16. 17. 17. | 1457 | 16. 17. 17. |
1458 | 1458 | ||
1459 | gt(6) | 1459 | gt(6) |
1460 | 1460 | ||
1461 | 1461 | ||
1462 | column 1 to 11 | 1462 | column 1 to 11 |
1463 | 1463 | ||
1464 | 2. 10. 3. 5. 7. 4. 6. 8. 9. 7. 7. | 1464 | 2. 10. 3. 5. 7. 4. 6. 8. 9. 7. 7. |
1465 | 1465 | ||
1466 | column 12 to 21 | 1466 | column 12 to 21 |
1467 | 1467 | ||
1468 | 11. 15. 12. 13. 9. 10. 14. 11. 16. 1. | 1468 | 11. 15. 12. 13. 9. 10. 14. 11. 16. 1. |
1469 | 1469 | ||
1470 | column 22 to 24 | 1470 | column 22 to 24 |
1471 | 1471 | ||
1472 | 17. 14. 15. | 1472 | 17. 14. 15. |
1473 | 1473 | ||
1474 | gt(7) | 1474 | gt(7) |
1475 | 1475 | ||
1476 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ! | 1476 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ! |
1477 | 1477 | ||
1478 | gt(8) | 1478 | gt(8) |
1479 | 1479 | ||
1480 | [] | 1480 | [] |
1481 | 1481 | ||
1482 | gt(9) | 1482 | gt(9) |
1483 | 1483 | ||
1484 | [] | 1484 | [] |
1485 | 1485 | ||
1486 | gt(10) | 1486 | gt(10) |
1487 | 1487 | ||
1488 | [] | 1488 | [] |
1489 | 1489 | ||
1490 | gt(11) | 1490 | gt(11) |
1491 | 1491 | ||
1492 | [] | 1492 | [] |
1493 | 1493 | ||
1494 | gt(12) | 1494 | gt(12) |
1495 | 1495 | ||
1496 | [] | 1496 | [] |
1497 | 1497 | ||
1498 | gt(13) | 1498 | gt(13) |
1499 | 1499 | ||
1500 | [] | 1500 | [] |
1501 | 1501 | ||
1502 | gt(14) | 1502 | gt(14) |
1503 | 1503 | ||
1504 | [] | 1504 | [] |
1505 | 1505 | ||
1506 | gt(15) | 1506 | gt(15) |
1507 | 1507 | ||
1508 | [] | 1508 | [] |
1509 | 1509 | ||
1510 | gt(16) | 1510 | gt(16) |
1511 | 1511 | ||
1512 | 1512 | ||
1513 | column 1 to 19 | 1513 | column 1 to 19 |
1514 | 1514 | ||
1515 | !1 2 3 4 5 6 9 10 12 13 14 15 18 19 20 21 22 23 24 ! | 1515 | !1 2 3 4 5 6 9 10 12 13 14 15 18 19 20 21 22 23 24 ! |
1516 | 1516 | ||
1517 | column 20 to 24 | 1517 | column 20 to 24 |
1518 | 1518 | ||
1519 | !25 26 27 28 29 ! | 1519 | !25 26 27 28 29 ! |
1520 | 1520 | ||
1521 | gt(17) | 1521 | gt(17) |
1522 | 1522 | ||
1523 | 1523 | ||
1524 | column 1 to 11 | 1524 | column 1 to 11 |
1525 | 1525 | ||
1526 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1526 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1527 | 1527 | ||
1528 | column 12 to 22 | 1528 | column 12 to 22 |
1529 | 1529 | ||
1530 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1530 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1531 | 1531 | ||
1532 | column 23 to 24 | 1532 | column 23 to 24 |
1533 | 1533 | ||
1534 | 1. 1. | 1534 | 1. 1. |
1535 | 1535 | ||
1536 | gt(18) | 1536 | gt(18) |
1537 | 1537 | ||
1538 | 1538 | ||
1539 | column 1 to 11 | 1539 | column 1 to 11 |
1540 | 1540 | ||
1541 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1541 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1542 | 1542 | ||
1543 | column 12 to 22 | 1543 | column 12 to 22 |
1544 | 1544 | ||
1545 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1545 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1546 | 1546 | ||
1547 | column 23 to 24 | 1547 | column 23 to 24 |
1548 | 1548 | ||
1549 | 1. 1. | 1549 | 1. 1. |
1550 | 1550 | ||
1551 | gt(19) | 1551 | gt(19) |
1552 | 1552 | ||
1553 | 1553 | ||
1554 | column 1 to 11 | 1554 | column 1 to 11 |
1555 | 1555 | ||
1556 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1556 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1557 | 1557 | ||
1558 | column 12 to 22 | 1558 | column 12 to 22 |
1559 | 1559 | ||
1560 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1560 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1561 | 1561 | ||
1562 | column 23 to 24 | 1562 | column 23 to 24 |
1563 | 1563 | ||
1564 | 1. 1. | 1564 | 1. 1. |
1565 | 1565 | ||
1566 | gt(20) | 1566 | gt(20) |
1567 | 1567 | ||
1568 | 1568 | ||
1569 | column 1 to 11 | 1569 | column 1 to 11 |
1570 | 1570 | ||
1571 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 1571 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
1572 | 1572 | ||
1573 | column 12 to 22 | 1573 | column 12 to 22 |
1574 | 1574 | ||
1575 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 1575 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
1576 | 1576 | ||
1577 | column 23 to 24 | 1577 | column 23 to 24 |
1578 | 1578 | ||
1579 | 0. 0. | 1579 | 0. 0. |
1580 | 1580 | ||
1581 | gt(21) | 1581 | gt(21) |
1582 | 1582 | ||
1583 | [] | 1583 | [] |
1584 | 1584 | ||
1585 | gt(22) | 1585 | gt(22) |
1586 | 1586 | ||
1587 | [] | 1587 | [] |
1588 | 1588 | ||
1589 | gt(23) | 1589 | gt(23) |
1590 | 1590 | ||
1591 | [] | 1591 | [] |
1592 | 1592 | ||
1593 | gt(24) | 1593 | gt(24) |
1594 | 1594 | ||
1595 | [] | 1595 | [] |
1596 | 1596 | ||
1597 | gt(25) | 1597 | gt(25) |
1598 | 1598 | ||
1599 | [] | 1599 | [] |
1600 | 1600 | ||
1601 | gt(26) | 1601 | gt(26) |
1602 | 1602 | ||
1603 | [] | 1603 | [] |
1604 | 1604 | ||
1605 | gt(27) | 1605 | gt(27) |
1606 | 1606 | ||
1607 | [] | 1607 | [] |
1608 | 1608 | ||
1609 | gt(28) | 1609 | gt(28) |
1610 | 1610 | ||
1611 | 15. | 1611 | 15. |
1612 | 1612 | ||
1613 | gt(29) | 1613 | gt(29) |
1614 | 1614 | ||
1615 | 1. | 1615 | 1. |
1616 | 1616 | ||
1617 | gt(30) | 1617 | gt(30) |
1618 | 1618 | ||
1619 | 1. | 1619 | 1. |
1620 | 1620 | ||
1621 | gt(31) | 1621 | gt(31) |
1622 | 1622 | ||
1623 | [] | 1623 | 3. |
1624 | 1624 | ||
1625 | gt(32) | 1625 | gt(32) |
1626 | 1626 | ||
1627 | 8. | 1627 | 8. |
1628 | 1628 | ||
1629 | gt(33) | 1629 | gt(33) |
1630 | 1630 | ||
1631 | 1631 | ||
1632 | gt(34) | 1632 | gt(34) |
1633 | 1633 | ||
1634 | ! ! | 1634 | ! ! |
1635 | 1635 | ||
1636 | 1636 | ||
1637 | // delete_nodes | 1637 | // delete_nodes |
1638 | 1638 | ||
1639 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; | 1639 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; |
1640 | 1640 | ||
1641 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; | 1641 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; |
1642 | 1642 | ||
1643 | g=make_graph('foo',1,17,ta,he); | 1643 | g=make_graph('foo',1,17,ta,he); |
1644 | 1644 | ||
1645 | v=[10 13 4]; | 1645 | v=[10 13 4]; |
1646 | 1646 | ||
1647 | gt=delete_nodes(v,g) | 1647 | gt=delete_nodes(v,g) |
1648 | gt = | 1648 | gt = |
1649 | 1649 | ||
1650 | 1650 | ||
1651 | gt(1) | 1651 | gt(1) |
1652 | 1652 | ||
1653 | 1653 | ||
1654 | column 1 to 8 | 1654 | column 1 to 8 |
1655 | 1655 | ||
1656 | !graph name directed node_number tail head node_name node_type ! | 1656 | !graph name directed node_number tail head node_name node_type ! |
1657 | 1657 | ||
1658 | column 9 to 14 | 1658 | column 9 to 14 |
1659 | 1659 | ||
1660 | !node_x node_y node_color node_diam node_border node_font_size ! | 1660 | !node_x node_y node_color node_diam node_border node_font_size ! |
1661 | 1661 | ||
1662 | column 15 to 19 | 1662 | column 15 to 19 |
1663 | 1663 | ||
1664 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 1664 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
1665 | 1665 | ||
1666 | column 20 to 24 | 1666 | column 20 to 24 |
1667 | 1667 | ||
1668 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 1668 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
1669 | 1669 | ||
1670 | column 25 to 28 | 1670 | column 25 to 28 |
1671 | 1671 | ||
1672 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 1672 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
1673 | 1673 | ||
1674 | column 29 to 31 | 1674 | column 29 to 31 |
1675 | 1675 | ||
1676 | !default_node_border default_edge_width default_edge_hi_width ! | 1676 | !default_node_border default_edge_width default_edge_hi_width ! |
1677 | 1677 | ||
1678 | column 32 to 34 | 1678 | column 32 to 34 |
1679 | 1679 | ||
1680 | !default_font_size node_label edge_label ! | 1680 | !default_font_size node_label edge_label ! |
1681 | 1681 | ||
1682 | gt(2) | 1682 | gt(2) |
1683 | 1683 | ||
1684 | foo | 1684 | foo |
1685 | 1685 | ||
1686 | gt(3) | 1686 | gt(3) |
1687 | 1687 | ||
1688 | 1. | 1688 | 1. |
1689 | 1689 | ||
1690 | gt(4) | 1690 | gt(4) |
1691 | 1691 | ||
1692 | 14. | 1692 | 14. |
1693 | 1693 | ||
1694 | gt(5) | 1694 | gt(5) |
1695 | 1695 | ||
1696 | 1696 | ||
1697 | column 1 to 11 | 1697 | column 1 to 11 |
1698 | 1698 | ||
1699 | 1. 2. 2. 2. 4. 6. 7. 7. 8. 9. 11. | 1699 | 1. 2. 2. 2. 4. 6. 7. 7. 8. 9. 11. |
1700 | 1700 | ||
1701 | column 12 to 16 | 1701 | column 12 to 16 |
1702 | 1702 | ||
1703 | 12. 13. 13. 14. 14. | 1703 | 12. 13. 13. 14. 14. |
1704 | 1704 | ||
1705 | gt(6) | 1705 | gt(6) |
1706 | 1706 | ||
1707 | 1707 | ||
1708 | column 1 to 11 | 1708 | column 1 to 11 |
1709 | 1709 | ||
1710 | 2. 3. 4. 6. 5. 7. 5. 8. 6. 10. 9. | 1710 | 2. 3. 4. 6. 5. 7. 5. 8. 6. 10. 9. |
1711 | 1711 | ||
1712 | column 12 to 16 | 1712 | column 12 to 16 |
1713 | 1713 | ||
1714 | 13. 1. 14. 11. 12. | 1714 | 13. 1. 14. 11. 12. |
1715 | 1715 | ||
1716 | gt(7) | 1716 | gt(7) |
1717 | 1717 | ||
1718 | !1 2 3 5 6 7 8 9 11 12 14 15 16 17 ! | 1718 | !1 2 3 5 6 7 8 9 11 12 14 15 16 17 ! |
1719 | 1719 | ||
1720 | gt(8) | 1720 | gt(8) |
1721 | 1721 | ||
1722 | [] | 1722 | [] |
1723 | 1723 | ||
1724 | gt(9) | 1724 | gt(9) |
1725 | 1725 | ||
1726 | [] | 1726 | [] |
1727 | 1727 | ||
1728 | gt(10) | 1728 | gt(10) |
1729 | 1729 | ||
1730 | [] | 1730 | [] |
1731 | 1731 | ||
1732 | gt(11) | 1732 | gt(11) |
1733 | 1733 | ||
1734 | [] | 1734 | [] |
1735 | 1735 | ||
1736 | gt(12) | 1736 | gt(12) |
1737 | 1737 | ||
1738 | [] | 1738 | [] |
1739 | 1739 | ||
1740 | gt(13) | 1740 | gt(13) |
1741 | 1741 | ||
1742 | [] | 1742 | [] |
1743 | 1743 | ||
1744 | gt(14) | 1744 | gt(14) |
1745 | 1745 | ||
1746 | [] | 1746 | [] |
1747 | 1747 | ||
1748 | gt(15) | 1748 | gt(15) |
1749 | 1749 | ||
1750 | [] | 1750 | [] |
1751 | 1751 | ||
1752 | gt(16) | 1752 | gt(16) |
1753 | 1753 | ||
1754 | !1 3 4 5 9 10 11 12 13 19 24 25 26 27 28 29 ! | 1754 | !1 3 4 5 9 10 11 12 13 19 24 25 26 27 28 29 ! |
1755 | 1755 | ||
1756 | gt(17) | 1756 | gt(17) |
1757 | 1757 | ||
1758 | 1758 | ||
1759 | column 1 to 11 | 1759 | column 1 to 11 |
1760 | 1760 | ||
1761 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1761 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1762 | 1762 | ||
1763 | column 12 to 16 | 1763 | column 12 to 16 |
1764 | 1764 | ||
1765 | 1. 1. 1. 1. 1. | 1765 | 1. 1. 1. 1. 1. |
1766 | 1766 | ||
1767 | gt(18) | 1767 | gt(18) |
1768 | 1768 | ||
1769 | 1769 | ||
1770 | column 1 to 11 | 1770 | column 1 to 11 |
1771 | 1771 | ||
1772 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1772 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1773 | 1773 | ||
1774 | column 12 to 16 | 1774 | column 12 to 16 |
1775 | 1775 | ||
1776 | 1. 1. 1. 1. 1. | 1776 | 1. 1. 1. 1. 1. |
1777 | 1777 | ||
1778 | gt(19) | 1778 | gt(19) |
1779 | 1779 | ||
1780 | 1780 | ||
1781 | column 1 to 11 | 1781 | column 1 to 11 |
1782 | 1782 | ||
1783 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1783 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
1784 | 1784 | ||
1785 | column 12 to 16 | 1785 | column 12 to 16 |
1786 | 1786 | ||
1787 | 1. 1. 1. 1. 1. | 1787 | 1. 1. 1. 1. 1. |
1788 | 1788 | ||
1789 | gt(20) | 1789 | gt(20) |
1790 | 1790 | ||
1791 | 1791 | ||
1792 | column 1 to 11 | 1792 | column 1 to 11 |
1793 | 1793 | ||
1794 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 1794 | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |
1795 | 1795 | ||
1796 | column 12 to 16 | 1796 | column 12 to 16 |
1797 | 1797 | ||
1798 | 0. 0. 0. 0. 0. | 1798 | 0. 0. 0. 0. 0. |
1799 | 1799 | ||
1800 | gt(21) | 1800 | gt(21) |
1801 | 1801 | ||
1802 | [] | 1802 | [] |
1803 | 1803 | ||
1804 | gt(22) | 1804 | gt(22) |
1805 | 1805 | ||
1806 | [] | 1806 | [] |
1807 | 1807 | ||
1808 | gt(23) | 1808 | gt(23) |
1809 | 1809 | ||
1810 | [] | 1810 | [] |
1811 | 1811 | ||
1812 | gt(24) | 1812 | gt(24) |
1813 | 1813 | ||
1814 | [] | 1814 | [] |
1815 | 1815 | ||
1816 | gt(25) | 1816 | gt(25) |
1817 | 1817 | ||
1818 | [] | 1818 | [] |
1819 | 1819 | ||
1820 | gt(26) | 1820 | gt(26) |
1821 | 1821 | ||
1822 | [] | 1822 | [] |
1823 | 1823 | ||
1824 | gt(27) | 1824 | gt(27) |
1825 | 1825 | ||
1826 | [] | 1826 | [] |
1827 | 1827 | ||
1828 | gt(28) | 1828 | gt(28) |
1829 | 1829 | ||
1830 | 15. | 1830 | 15. |
1831 | 1831 | ||
1832 | gt(29) | 1832 | gt(29) |
1833 | 1833 | ||
1834 | 1. | 1834 | 1. |
1835 | 1835 | ||
1836 | gt(30) | 1836 | gt(30) |
1837 | 1837 | ||
1838 | 1. | 1838 | 1. |
1839 | 1839 | ||
1840 | gt(31) | 1840 | gt(31) |
1841 | 1841 | ||
1842 | [] | 1842 | 3. |
1843 | 1843 | ||
1844 | gt(32) | 1844 | gt(32) |
1845 | 1845 | ||
1846 | 8. | 1846 | 8. |
1847 | 1847 | ||
1848 | gt(33) | 1848 | gt(33) |
1849 | 1849 | ||
1850 | [] | 1850 | [] |
1851 | 1851 | ||
1852 | gt(34) | 1852 | gt(34) |
1853 | 1853 | ||
1854 | ! ! | 1854 | ! ! |
1855 | 1855 | ||
1856 | 1856 | ||
1857 | // edge_number | 1857 | // edge_number |
1858 | 1858 | ||
1859 | ta=[1 1 2 4 4 5 6 7 2 3 5 1]; | 1859 | ta=[1 1 2 4 4 5 6 7 2 3 5 1]; |
1860 | 1860 | ||
1861 | he=[2 6 3 6 7 8 8 8 4 7 3 5]; | 1861 | he=[2 6 3 6 7 8 8 8 4 7 3 5]; |
1862 | 1862 | ||
1863 | g=make_graph('foo',1,8,ta,he); | 1863 | g=make_graph('foo',1,8,ta,he); |
1864 | 1864 | ||
1865 | edge_number(g) | 1865 | edge_number(g) |
1866 | ans = | 1866 | ans = |
1867 | 1867 | ||
1868 | 12. | 1868 | 12. |
1869 | 1869 | ||
1870 | 1870 | ||
1871 | // find_path | 1871 | // find_path |
1872 | 1872 | ||
1873 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; | 1873 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; |
1874 | 1874 | ||
1875 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15]; | 1875 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15]; |
1876 | 1876 | ||
1877 | g=make_graph('foo',1,17,ta,he); | 1877 | g=make_graph('foo',1,17,ta,he); |
1878 | 1878 | ||
1879 | p=find_path(1,14,g) | 1879 | p=find_path(1,14,g) |
1880 | p = | 1880 | p = |
1881 | 1881 | ||
1882 | 2. 16. 23. 25. 26. | 1882 | 2. 16. 23. 25. 26. |
1883 | 1883 | ||
1884 | 1884 | ||
1885 | // gen_net | 1885 | // gen_net |
1886 | 1886 | ||
1887 | v=[1,10,2,1,0,10,100,100,0,100,50,50]; | 1887 | v=[1,10,2,1,0,10,100,100,0,100,50,50]; |
1888 | 1888 | ||
1889 | g=gen_net('foo',1,v) | 1889 | g=gen_net('foo',1,v) |
1890 | g = | 1890 | g = |
1891 | 1891 | ||
1892 | 1892 | ||
1893 | g(1) | 1893 | g(1) |
1894 | 1894 | ||
1895 | 1895 | ||
1896 | column 1 to 8 | 1896 | column 1 to 8 |
1897 | 1897 | ||
1898 | !graph name directed node_number tail head node_name node_type ! | 1898 | !graph name directed node_number tail head node_name node_type ! |
1899 | 1899 | ||
1900 | column 9 to 14 | 1900 | column 9 to 14 |
1901 | 1901 | ||
1902 | !node_x node_y node_color node_diam node_border node_font_size ! | 1902 | !node_x node_y node_color node_diam node_border node_font_size ! |
1903 | 1903 | ||
1904 | column 15 to 19 | 1904 | column 15 to 19 |
1905 | 1905 | ||
1906 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 1906 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
1907 | 1907 | ||
1908 | column 20 to 24 | 1908 | column 20 to 24 |
1909 | 1909 | ||
1910 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 1910 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
1911 | 1911 | ||
1912 | column 25 to 28 | 1912 | column 25 to 28 |
1913 | 1913 | ||
1914 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 1914 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
1915 | 1915 | ||
1916 | column 29 to 31 | 1916 | column 29 to 31 |
1917 | 1917 | ||
1918 | !default_node_border default_edge_width default_edge_hi_width ! | 1918 | !default_node_border default_edge_width default_edge_hi_width ! |
1919 | 1919 | ||
1920 | column 32 to 34 | 1920 | column 32 to 34 |
1921 | 1921 | ||
1922 | !default_font_size node_label edge_label ! | 1922 | !default_font_size node_label edge_label ! |
1923 | 1923 | ||
1924 | g(2) | 1924 | g(2) |
1925 | 1925 | ||
1926 | foo | 1926 | foo |
1927 | 1927 | ||
1928 | g(3) | 1928 | g(3) |
1929 | 1929 | ||
1930 | 1. | 1930 | 1. |
1931 | 1931 | ||
1932 | g(4) | 1932 | g(4) |
1933 | 1933 | ||
1934 | 10. | 1934 | 10. |
1935 | 1935 | ||
1936 | g(5) | 1936 | g(5) |
1937 | 1937 | ||
1938 | 1938 | ||
1939 | column 1 to 11 | 1939 | column 1 to 11 |
1940 | 1940 | ||
1941 | 1. 8. 4. 3. 8. 10. 4. 3. 6. 7. 3. | 1941 | 1. 8. 4. 3. 8. 10. 4. 3. 6. 7. 3. |
1942 | 1942 | ||
1943 | column 12 to 19 | 1943 | column 12 to 19 |
1944 | 1944 | ||
1945 | 2. 6. 7. 9. 2. 5. 7. 9. | 1945 | 2. 6. 7. 9. 2. 5. 7. 9. |
1946 | 1946 | ||
1947 | g(6) | 1947 | g(6) |
1948 | 1948 | ||
1949 | 1949 | ||
1950 | column 1 to 11 | 1950 | column 1 to 11 |
1951 | 1951 | ||
1952 | 8. 4. 1. 4. 3. 1. 10. 10. 7. 3. 6. | 1952 | 8. 4. 1. 4. 3. 1. 10. 10. 7. 3. 6. |
1953 | 1953 | ||
1954 | column 12 to 19 | 1954 | column 12 to 19 |
1955 | 1955 | ||
1956 | 7. 2. 10. 7. 9. 10. 5. 5. | 1956 | 7. 2. 10. 7. 9. 10. 5. 5. |
1957 | 1957 | ||
1958 | g(7) | 1958 | g(7) |
1959 | 1959 | ||
1960 | !1 2 3 4 5 6 7 8 9 10 ! | 1960 | !1 2 3 4 5 6 7 8 9 10 ! |
1961 | 1961 | ||
1962 | g(8) | 1962 | g(8) |
1963 | 1963 | ||
1964 | 2. 2. 0. 0. 0. 0. 0. 0. 0. 1. | 1964 | 2. 2. 0. 0. 0. 0. 0. 0. 0. 1. |
1965 | 1965 | ||
1966 | g(9) | 1966 | g(9) |
1967 | 1967 | ||
1968 | 1968 | ||
1969 | column 1 to 8 | 1969 | column 1 to 8 |
1970 | 1970 | ||
1971 | 210. 650. 450. 290. 890. 610. 810. 210. | 1971 | 210. 650. 450. 290. 890. 610. 810. 210. |
1972 | 1972 | ||
1973 | column 9 to 10 | 1973 | column 9 to 10 |
1974 | 1974 | ||
1975 | 930. 370. | 1975 | 930. 370. |
1976 | 1976 | ||
1977 | g(10) | 1977 | g(10) |
1978 | 1978 | ||
1979 | 1979 | ||
1980 | column 1 to 8 | 1980 | column 1 to 8 |
1981 | 1981 | ||
1982 | 523. 203. 243. 403. 483. 203. 403. 443. | 1982 | 523. 203. 243. 403. 483. 203. 403. 443. |
1983 | 1983 | ||
1984 | column 9 to 10 | 1984 | column 9 to 10 |
1985 | 1985 | ||
1986 | 363. 563. | 1986 | 363. 563. |
1987 | 1987 | ||
1988 | g(11) | 1988 | g(11) |
1989 | 1989 | ||
1990 | [] | 1990 | [] |
1991 | 1991 | ||
1992 | g(12) | 1992 | g(12) |
1993 | 1993 | ||
1994 | [] | 1994 | [] |
1995 | 1995 | ||
1996 | g(13) | 1996 | g(13) |
1997 | 1997 | ||
1998 | [] | 1998 | [] |
1999 | 1999 | ||
2000 | g(14) | 2000 | g(14) |
2001 | 2001 | ||
2002 | [] | 2002 | [] |
2003 | 2003 | ||
2004 | g(15) | 2004 | g(15) |
2005 | 2005 | ||
2006 | [] | 2006 | [] |
2007 | 2007 | ||
2008 | g(16) | 2008 | g(16) |
2009 | 2009 | ||
2010 | [] | 2010 | [] |
2011 | 2011 | ||
2012 | g(17) | 2012 | g(17) |
2013 | 2013 | ||
2014 | [] | 2014 | [] |
2015 | 2015 | ||
2016 | g(18) | 2016 | g(18) |
2017 | 2017 | ||
2018 | [] | 2018 | [] |
2019 | 2019 | ||
2020 | g(19) | 2020 | g(19) |
2021 | 2021 | ||
2022 | [] | 2022 | [] |
2023 | 2023 | ||
2024 | g(20) | 2024 | g(20) |
2025 | 2025 | ||
2026 | [] | 2026 | [] |
2027 | 2027 | ||
2028 | g(21) | 2028 | g(21) |
2029 | 2029 | ||
2030 | [] | 2030 | [] |
2031 | 2031 | ||
2032 | g(22) | 2032 | g(22) |
2033 | 2033 | ||
2034 | 2034 | ||
2035 | column 1 to 11 | 2035 | column 1 to 11 |
2036 | 2036 | ||
2037 | 0. 7. 0. 0. 5. 0. 1. 0. 10. 2. 0. | 2037 | 0. 7. 0. 0. 5. 0. 1. 0. 10. 2. 0. |
2038 | 2038 | ||
2039 | column 12 to 19 | 2039 | column 12 to 19 |
2040 | 2040 | ||
2041 | 10. 6. 5. 0. 7. 0. 6. 0. | 2041 | 10. 6. 5. 0. 7. 0. 6. 0. |
2042 | 2042 | ||
2043 | g(23) | 2043 | g(23) |
2044 | 2044 | ||
2045 | [] | 2045 | [] |
2046 | 2046 | ||
2047 | g(24) | 2047 | g(24) |
2048 | 2048 | ||
2049 | 2049 | ||
2050 | column 1 to 9 | 2050 | column 1 to 9 |
2051 | 2051 | ||
2052 | 100. 100. 41. 100. 72. 56. 51. 50. 100. | 2052 | 100. 100. 41. 100. 72. 56. 51. 50. 100. |
2053 | 2053 | ||
2054 | column 10 to 18 | 2054 | column 10 to 18 |
2055 | 2055 | ||
2056 | 100. 30. 100. 8. 99. 60. 100. 17. 100. | 2056 | 100. 30. 100. 8. 99. 60. 100. 17. 100. |
2057 | 2057 | ||
2058 | column 19 | 2058 | column 19 |
2059 | 2059 | ||
2060 | 100. | 2060 | 100. |
2061 | 2061 | ||
2062 | g(25) | 2062 | g(25) |
2063 | 2063 | ||
2064 | [] | 2064 | [] |
2065 | 2065 | ||
2066 | g(26) | 2066 | g(26) |
2067 | 2067 | ||
2068 | [] | 2068 | [] |
2069 | 2069 | ||
2070 | g(27) | 2070 | g(27) |
2071 | 2071 | ||
2072 | [] | 2072 | [] |
2073 | 2073 | ||
2074 | g(28) | 2074 | g(28) |
2075 | 2075 | ||
2076 | [] | 2076 | [] |
2077 | 2077 | ||
2078 | g(29) | 2078 | g(29) |
2079 | 2079 | ||
2080 | 10. | 2080 | 10. |
2081 | 2081 | ||
2082 | g(30) | 2082 | g(30) |
2083 | 2083 | ||
2084 | 1. | 2084 | 1. |
2085 | 2085 | ||
2086 | g(31) | 2086 | g(31) |
2087 | 2087 | ||
2088 | 1. | 2088 | 1. |
2089 | 2089 | ||
2090 | g(32) | 2090 | g(32) |
2091 | 2091 | ||
2092 | 1. | 2092 | 1. |
2093 | 2093 | ||
2094 | g(33) | 2094 | g(33) |
2095 | 2095 | ||
2096 | 1. | 2096 | 1. |
2097 | 2097 | ||
2098 | g(34) | 2098 | g(34) |
2099 | 2099 | ||
2100 | [] | 2100 | [] |
2101 | 2101 | ||
2102 | g(35) | 2102 | g(35) |
2103 | 2103 | ||
2104 | [] | 2104 | [] |
2105 | 2105 | ||
2106 | 2106 | ||
2107 | // girth | 2107 | // girth |
2108 | 2108 | ||
2109 | ta=[1 6 2 4 7 5 6 8 4 3 5 1]; | 2109 | ta=[1 6 2 4 7 5 6 8 4 3 5 1]; |
2110 | 2110 | ||
2111 | he=[2 1 3 6 4 8 8 7 2 7 3 5]; | 2111 | he=[2 1 3 6 4 8 8 7 2 7 3 5]; |
2112 | 2112 | ||
2113 | g=make_graph('foo',1,8,ta,he); | 2113 | g=make_graph('foo',1,8,ta,he); |
2114 | 2114 | ||
2115 | d=girth(g) | 2115 | d=girth(g) |
2116 | d = | 2116 | d = |
2117 | 2117 | ||
2118 | 4. | 2118 | 4. |
2119 | 2119 | ||
2120 | 2120 | ||
2121 | // glist | 2121 | // glist |
2122 | 2122 | ||
2123 | ta=[1 1 2 7 8 9 10 10 10 10 11 12 13 13]; | 2123 | ta=[1 1 2 7 8 9 10 10 10 10 11 12 13 13]; |
2124 | 2124 | ||
2125 | he=[2 10 7 8 9 7 7 11 13 13 12 13 9 10]; | 2125 | he=[2 10 7 8 9 7 7 11 13 13 12 13 9 10]; |
2126 | 2126 | ||
2127 | g=glist('foo',1,13,ta,he,[],[],[],[],[],[],[],[],[],[],[],.. | 2127 | g=glist('foo',1,13,ta,he,[],[],[],[],[],[],[],[],[],[],[],.. |
2128 | [],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]) | 2128 | [],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]) |
2129 | g = | 2129 | g = |
2130 | 2130 | ||
2131 | 2131 | ||
2132 | g(1) | 2132 | g(1) |
2133 | 2133 | ||
2134 | 2134 | ||
2135 | column 1 to 8 | 2135 | column 1 to 8 |
2136 | 2136 | ||
2137 | !graph name directed node_number tail head node_name node_type ! | 2137 | !graph name directed node_number tail head node_name node_type ! |
2138 | 2138 | ||
2139 | column 9 to 14 | 2139 | column 9 to 14 |
2140 | 2140 | ||
2141 | !node_x node_y node_color node_diam node_border node_font_size ! | 2141 | !node_x node_y node_color node_diam node_border node_font_size ! |
2142 | 2142 | ||
2143 | column 15 to 19 | 2143 | column 15 to 19 |
2144 | 2144 | ||
2145 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 2145 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
2146 | 2146 | ||
2147 | column 20 to 24 | 2147 | column 20 to 24 |
2148 | 2148 | ||
2149 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 2149 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
2150 | 2150 | ||
2151 | column 25 to 28 | 2151 | column 25 to 28 |
2152 | 2152 | ||
2153 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 2153 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
2154 | 2154 | ||
2155 | column 29 to 31 | 2155 | column 29 to 31 |
2156 | 2156 | ||
2157 | !default_node_border default_edge_width default_edge_hi_width ! | 2157 | !default_node_border default_edge_width default_edge_hi_width ! |
2158 | 2158 | ||
2159 | column 32 to 34 | 2159 | column 32 to 34 |
2160 | 2160 | ||
2161 | !default_font_size node_label edge_label ! | 2161 | !default_font_size node_label edge_label ! |
2162 | 2162 | ||
2163 | g(2) | 2163 | g(2) |
2164 | 2164 | ||
2165 | foo | 2165 | foo |
2166 | 2166 | ||
2167 | g(3) | 2167 | g(3) |
2168 | 2168 | ||
2169 | 1. | 2169 | 1. |
2170 | 2170 | ||
2171 | g(4) | 2171 | g(4) |
2172 | 2172 | ||
2173 | 13. | 2173 | 13. |
2174 | 2174 | ||
2175 | g(5) | 2175 | g(5) |
2176 | 2176 | ||
2177 | 2177 | ||
2178 | column 1 to 10 | 2178 | column 1 to 10 |
2179 | 2179 | ||
2180 | 1. 1. 2. 7. 8. 9. 10. 10. 10. 10. | 2180 | 1. 1. 2. 7. 8. 9. 10. 10. 10. 10. |
2181 | 2181 | ||
2182 | column 11 to 14 | 2182 | column 11 to 14 |
2183 | 2183 | ||
2184 | 11. 12. 13. 13. | 2184 | 11. 12. 13. 13. |
2185 | 2185 | ||
2186 | g(6) | 2186 | g(6) |
2187 | 2187 | ||
2188 | 2188 | ||
2189 | column 1 to 10 | 2189 | column 1 to 10 |
2190 | 2190 | ||
2191 | 2. 10. 7. 8. 9. 7. 7. 11. 13. 13. | 2191 | 2. 10. 7. 8. 9. 7. 7. 11. 13. 13. |
2192 | 2192 | ||
2193 | column 11 to 14 | 2193 | column 11 to 14 |
2194 | 2194 | ||
2195 | 12. 13. 9. 10. | 2195 | 12. 13. 9. 10. |
2196 | 2196 | ||
2197 | g(7) | 2197 | g(7) |
2198 | 2198 | ||
2199 | [] | 2199 | [] |
2200 | 2200 | ||
2201 | g(8) | 2201 | g(8) |
2202 | 2202 | ||
2203 | [] | 2203 | [] |
2204 | 2204 | ||
2205 | g(9) | 2205 | g(9) |
2206 | 2206 | ||
2207 | [] | 2207 | [] |
2208 | 2208 | ||
2209 | g(10) | 2209 | g(10) |
2210 | 2210 | ||
2211 | [] | 2211 | [] |
2212 | 2212 | ||
2213 | g(11) | 2213 | g(11) |
2214 | 2214 | ||
2215 | [] | 2215 | [] |
2216 | 2216 | ||
2217 | g(12) | 2217 | g(12) |
2218 | 2218 | ||
2219 | [] | 2219 | [] |
2220 | 2220 | ||
2221 | g(13) | 2221 | g(13) |
2222 | 2222 | ||
2223 | [] | 2223 | [] |
2224 | 2224 | ||
2225 | g(14) | 2225 | g(14) |
2226 | 2226 | ||
2227 | [] | 2227 | [] |
2228 | 2228 | ||
2229 | g(15) | 2229 | g(15) |
2230 | 2230 | ||
2231 | [] | 2231 | [] |
2232 | 2232 | ||
2233 | g(16) | 2233 | g(16) |
2234 | 2234 | ||
2235 | [] | 2235 | [] |
2236 | 2236 | ||
2237 | g(17) | 2237 | g(17) |
2238 | 2238 | ||
2239 | [] | 2239 | [] |
2240 | 2240 | ||
2241 | g(18) | 2241 | g(18) |
2242 | 2242 | ||
2243 | [] | 2243 | [] |
2244 | 2244 | ||
2245 | g(19) | 2245 | g(19) |
2246 | 2246 | ||
2247 | [] | 2247 | [] |
2248 | 2248 | ||
2249 | g(20) | 2249 | g(20) |
2250 | 2250 | ||
2251 | [] | 2251 | [] |
2252 | 2252 | ||
2253 | g(21) | 2253 | g(21) |
2254 | 2254 | ||
2255 | [] | 2255 | [] |
2256 | 2256 | ||
2257 | g(22) | 2257 | g(22) |
2258 | 2258 | ||
2259 | [] | 2259 | [] |
2260 | 2260 | ||
2261 | g(23) | 2261 | g(23) |
2262 | 2262 | ||
2263 | [] | 2263 | [] |
2264 | 2264 | ||
2265 | g(24) | 2265 | g(24) |
2266 | 2266 | ||
2267 | [] | 2267 | [] |
2268 | 2268 | ||
2269 | g(25) | 2269 | g(25) |
2270 | 2270 | ||
2271 | [] | 2271 | [] |
2272 | 2272 | ||
2273 | g(26) | 2273 | g(26) |
2274 | 2274 | ||
2275 | [] | 2275 | [] |
2276 | 2276 | ||
2277 | g(27) | 2277 | g(27) |
2278 | 2278 | ||
2279 | [] | 2279 | [] |
2280 | 2280 | ||
2281 | g(28) | 2281 | g(28) |
2282 | 2282 | ||
2283 | [] | 2283 | [] |
2284 | 2284 | ||
2285 | g(29) | 2285 | g(29) |
2286 | 2286 | ||
2287 | [] | 2287 | [] |
2288 | 2288 | ||
2289 | g(30) | 2289 | g(30) |
2290 | 2290 | ||
2291 | [] | 2291 | [] |
2292 | 2292 | ||
2293 | g(31) | 2293 | g(31) |
2294 | 2294 | ||
2295 | [] | 2295 | [] |
2296 | 2296 | ||
2297 | g(32) | 2297 | g(32) |
2298 | 2298 | ||
2299 | [] | 2299 | [] |
2300 | 2300 | ||
2301 | g(33) | 2301 | g(33) |
2302 | 2302 | ||
2303 | [] | 2303 | [] |
2304 | 2304 | ||
2305 | g(34) | 2305 | g(34) |
2306 | 2306 | ||
2307 | [] | 2307 | [] |
2308 | 2308 | ||
2309 | 2309 | ||
2310 | // graph_2_mat | 2310 | // graph_2_mat |
2311 | 2311 | ||
2312 | g=load_graph(SCI+'/modules/metanet/demos/colored'); | 2312 | g=load_graph(SCI+'/demos/metanet/colored'); |
2313 | 2313 | ||
2314 | a=graph_2_mat(g) | 2314 | a=graph_2_mat(g) |
2315 | a = | 2315 | a = |
2316 | 2316 | ||
2317 | ( 10, 21) sparse matrix | 2317 | ( 10, 21) sparse matrix |
2318 | 2318 | ||
2319 | ( 1, 17) 1. | 2319 | ( 1, 17) 1. |
2320 | ( 1, 18) - 1. | 2320 | ( 1, 18) - 1. |
2321 | ( 2, 4) 1. | 2321 | ( 2, 4) 1. |
2322 | ( 2, 5) - 1. | 2322 | ( 2, 5) - 1. |
2323 | ( 2, 11) - 1. | 2323 | ( 2, 11) - 1. |
2324 | ( 2, 12) 1. | 2324 | ( 2, 12) 1. |
2325 | ( 2, 19) - 1. | 2325 | ( 2, 19) - 1. |
2326 | ( 3, 1) - 1. | 2326 | ( 3, 1) - 1. |
2327 | ( 3, 2) 1. | 2327 | ( 3, 2) 1. |
2328 | ( 3, 5) 1. | 2328 | ( 3, 5) 1. |
2329 | ( 3, 9) - 1. | 2329 | ( 3, 9) - 1. |
2330 | ( 4, 14) - 1. | 2330 | ( 4, 14) - 1. |
2331 | ( 4, 15) 1. | 2331 | ( 4, 15) 1. |
2332 | ( 4, 17) - 1. | 2332 | ( 4, 17) - 1. |
2333 | ( 4, 20) 1. | 2333 | ( 4, 20) 1. |
2334 | ( 5, 9) 1. | 2334 | ( 5, 9) 1. |
2335 | ( 5, 10) - 1. | 2335 | ( 5, 10) - 1. |
2336 | ( 5, 12) - 1. | 2336 | ( 5, 12) - 1. |
2337 | ( 5, 13) 1. | 2337 | ( 5, 13) 1. |
2338 | ( 6, 2) - 1. | 2338 | ( 6, 2) - 1. |
2339 | ( 6, 3) 1. | 2339 | ( 6, 3) 1. |
2340 | ( 6, 4) - 1. | 2340 | ( 6, 4) - 1. |
2341 | ( 6, 6) - 1. | 2341 | ( 6, 6) - 1. |
2342 | ( 6, 7) 1. | 2342 | ( 6, 7) 1. |
2343 | ( 7, 6) 1. | 2343 | ( 7, 6) 1. |
2344 | ( 7, 8) - 1. | 2344 | ( 7, 8) - 1. |
2345 | ( 7, 20) - 1. | 2345 | ( 7, 20) - 1. |
2346 | ( 7, 21) 1. | 2346 | ( 7, 21) 1. |
2347 | ( 8, 11) 1. | 2347 | ( 8, 11) 1. |
2348 | ( 8, 13) - 1. | 2348 | ( 8, 13) - 1. |
2349 | ( 8, 14) 1. | 2349 | ( 8, 14) 1. |
2350 | ( 8, 16) - 1. | 2350 | ( 8, 16) - 1. |
2351 | ( 8, 18) 1. | 2351 | ( 8, 18) 1. |
2352 | ( 9, 7) - 1. | 2352 | ( 9, 7) - 1. |
2353 | ( 9, 8) 1. | 2353 | ( 9, 8) 1. |
2354 | ( 9, 15) - 1. | 2354 | ( 9, 15) - 1. |
2355 | ( 9, 16) 1. | 2355 | ( 9, 16) 1. |
2356 | ( 9, 19) 1. | 2356 | ( 9, 19) 1. |
2357 | ( 10, 1) 1. | 2357 | ( 10, 1) 1. |
2358 | ( 10, 3) - 1. | 2358 | ( 10, 3) - 1. |
2359 | ( 10, 10) 1. | 2359 | ( 10, 10) 1. |
2360 | ( 10, 21) - 1. | 2360 | ( 10, 21) - 1. |
2361 | 2361 | ||
2362 | 2362 | ||
2363 | // graph_center | 2363 | // graph_center |
2364 | 2364 | ||
2365 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17]; | 2365 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17]; |
2366 | 2366 | ||
2367 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 15 12 13 9 14 11 16 1 17 14 15]; | 2367 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 15 12 13 9 14 11 16 1 17 14 15]; |
2368 | 2368 | ||
2369 | g=make_graph('foo',0,17,ta,he); | 2369 | g=make_graph('foo',0,17,ta,he); |
2370 | 2370 | ||
2371 | [no,rad] = graph_center(g) | 2371 | [no,rad] = graph_center(g) |
2372 | rad = | 2372 | rad = |
2373 | 2373 | ||
2374 | 3. | 2374 | 3. |
2375 | no = | 2375 | no = |
2376 | 2376 | ||
2377 | 1. | 2377 | 1. |
2378 | 2378 | ||
2379 | 2379 | ||
2380 | // graph_complement | 2380 | // graph_complement |
2381 | 2381 | ||
2382 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 11 12 13 13 13 14 15 17 17 16 16]; | 2382 | ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 11 12 13 13 13 14 15 17 17 16 16]; |
2383 | 2383 | ||
2384 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 15 12 13 9 10 14 11 16 14 15 1 17]; | 2384 | he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 15 12 13 9 10 14 11 16 14 15 1 17]; |
2385 | 2385 | ||
2386 | g=make_graph('foo',1,17,ta,he); | 2386 | g=make_graph('foo',1,17,ta,he); |
2387 | 2387 | ||
2388 | g1=graph_complement(g) | 2388 | g1=graph_complement(g) |
2389 | g1 = | 2389 | g1 = |
2390 | 2390 | ||
2391 | 2391 | ||
2392 | g1(1) | 2392 | g1(1) |
2393 | 2393 | ||
2394 | 2394 | ||
2395 | column 1 to 8 | 2395 | column 1 to 8 |
2396 | 2396 | ||
2397 | !graph name directed node_number tail head node_name node_type ! | 2397 | !graph name directed node_number tail head node_name node_type ! |
2398 | 2398 | ||
2399 | column 9 to 14 | 2399 | column 9 to 14 |
2400 | 2400 | ||
2401 | !node_x node_y node_color node_diam node_border node_font_size ! | 2401 | !node_x node_y node_color node_diam node_border node_font_size ! |
2402 | 2402 | ||
2403 | column 15 to 19 | 2403 | column 15 to 19 |
2404 | 2404 | ||
2405 | !node_demand edge_name edge_color edge_width edge_hi_width ! | 2405 | !node_demand edge_name edge_color edge_width edge_hi_width ! |
2406 | 2406 | ||
2407 | column 20 to 24 | 2407 | column 20 to 24 |
2408 | 2408 | ||
2409 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! | 2409 | !edge_font_size edge_length edge_cost edge_min_cap edge_max_cap ! |
2410 | 2410 | ||
2411 | column 25 to 28 | 2411 | column 25 to 28 |
2412 | 2412 | ||
2413 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! | 2413 | !edge_q_weight edge_q_orig edge_weight default_node_diam ! |
2414 | 2414 | ||
2415 | column 29 to 31 | 2415 | column 29 to 31 |
2416 | 2416 | ||
2417 | !default_node_border default_edge_width default_edge_hi_width ! | 2417 | !default_node_border default_edge_width default_edge_hi_width ! |
2418 | 2418 | ||
2419 | column 32 to 34 | 2419 | column 32 to 34 |
2420 | 2420 | ||
2421 | !default_font_size node_label edge_label ! | 2421 | !default_font_size node_label edge_label ! |
2422 | 2422 | ||
2423 | g1(2) | 2423 | g1(2) |
2424 | 2424 | ||
2425 | foo | 2425 | foo |
2426 | 2426 | ||
2427 | g1(3) | 2427 | g1(3) |
2428 | 2428 | ||
2429 | 0. | 2429 | 0. |
2430 | 2430 | ||
2431 | g1(4) | 2431 | g1(4) |
2432 | 2432 | ||
2433 | 17. | 2433 | 17. |
2434 | 2434 | ||
2435 | g1(5) | 2435 | g1(5) |
2436 | 2436 | ||
2437 | 2437 | ||
2438 | column 1 to 11 | 2438 | column 1 to 11 |
2439 | 2439 | ||
2440 | 3. 4. 5. 5. 6. 6. 6. 6. 7. 7. 7. | 2440 | 3. 4. 5. 5. 6. 6. 6. 6. 7. 7. 7. |
2441 | 2441 | ||
2442 | column 12 to 22 | 2442 | column 12 to 22 |
2443 | 2443 | ||
2444 | 7. 7. 8. 8. 8. 8. 8. 9. 9. 9. 9. | 2444 | 7. 7. 8. 8. 8. 8. 8. 9. 9. 9. 9. |
2445 | 2445 | ||
2446 | column 23 to 32 | 2446 | column 23 to 32 |
2447 | 2447 | ||
2448 | 9. 9. 10. 10. 10. 10. 10. 10. 10. 11. | 2448 | 9. 9. 10. 10. 10. 10. 10. 10. 10. 11. |
2449 | 2449 | ||
2450 | column 33 to 42 | 2450 | column 33 to 42 |
2451 | 2451 | ||
2452 | 11. 11. 11. 11. 11. 11. 11. 11. 12. 12. | 2452 | 11. 11. 11. 11. 11. 11. 11. 11. 12. 12. |
2453 | 2453 | ||
2454 | column 43 to 52 | 2454 | column 43 to 52 |
2455 | 2455 | ||
2456 | 12. 12. 12. 12. 12. 12. 12. 12. 13. 13. | 2456 | 12. 12. 12. 12. 12. 12. 12. 12. 13. 13. |
2457 | 2457 | ||
2458 | column 53 to 62 | 2458 | column 53 to 62 |
2459 | 2459 | ||
2460 | 13. 13. 13. 13. 13. 13. 13. 13. 14. 14. | 2460 | 13. 13. 13. 13. 13. 13. 13. 13. 14. 14. |
2461 | 2461 | ||
2462 | column 63 to 72 | 2462 | column 63 to 72 |
2463 | 2463 | ||
2464 | 14. 14. 14. 14. 14. 14. 14. 14. 14. 15. | 2464 | 14. 14. 14. 14. 14. 14. 14. 14. 14. 15. |
2465 | 2465 | ||
2466 | column 73 to 82 | 2466 | column 73 to 82 |
2467 | 2467 | ||
2468 | 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. | 2468 | 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. |
2469 | 2469 | ||
2470 | column 83 to 92 | 2470 | column 83 to 92 |
2471 | 2471 | ||
2472 | 15. 15. 16. 16. 16. 16. 16. 16. 16. 16. | 2472 | 15. 15. 16. 16. 16. 16. 16. 16. 16. 16. |
2473 | 2473 | ||
2474 | column 93 to 102 | 2474 | column 93 to 102 |
2475 | 2475 | ||
2476 | 16. 16. 16. 16. 16. 17. 17. 17. 17. 17. | 2476 | 16. 16. 16. 16. 16. 17. 17. 17. 17. 17. |
2477 | 2477 | ||
2478 | column 103 to 110 | 2478 | column 103 to 110 |
2479 | 2479 | ||
2480 | 17. 17. 17. 17. 17. 17. 17. 17. | 2480 | 17. 17. 17. 17. 17. 17. 17. 17. |
2481 | 2481 | ||
2482 | g1(6) | 2482 | g1(6) |
2483 | 2483 | ||
2484 | 2484 | ||
2485 | column 1 to 11 | 2485 | column 1 to 11 |
2486 | 2486 | ||
2487 | 1. 1. 1. 3. 1. 2. 3. 4. 1. 3. 4. | 2487 | 1. 1. 1. 3. 1. 2. 3. 4. 1. 3. 4. |
2488 | 2488 | ||
2489 | column 12 to 22 | 2489 | column 12 to 22 |
2490 | 2490 | ||
2491 | 5. 6. 1. 2. 3. 4. 5. 1. 2. 3. 4. | 2491 | 5. 6. 1. 2. 3. 4. 5. 1. 2. 3. 4. |
2492 | 2492 | ||
2493 | column 23 to 33 | 2493 | column 23 to 33 |
2494 | 2494 | ||
2495 | 5. 6. 2. 3. 4. 5. 6. 8. 9. 1. 2. | 2495 | 5. 6. 2. 3. 4. 5. 6. 8. 9. 1. 2. |
2496 | 2496 | ||
2497 | column 34 to 44 | 2497 | column 34 to 44 |
2498 | 2498 | ||
2499 | 3. 4. 5. 6. 7. 8. 9. 1. 2. 3. 4. | 2499 | 3. 4. 5. 6. 7. 8. 9. 1. 2. 3. 4. |
2500 | 2500 | ||
2501 | column 45 to 55 | 2501 | column 45 to 55 |
2502 | 2502 | ||
2503 | 5. 6. 7. 8. 9. 10. 1. 2. 3. 4. 5. | 2503 | 5. 6. 7. 8. 9. 10. 1. 2. 3. 4. 5. |
2504 | 2504 | ||
2505 | column 56 to 66 | 2505 | column 56 to 66 |
2506 | 2506 | ||
2507 | 6. 7. 8. 10. 11. 1. 2. 3. 4. 5. 6. | 2507 | 6. 7. 8. 10. 11. 1. 2. 3. 4. 5. 6. |
2508 | 2508 | ||
2509 | column 67 to 77 | 2509 | column 67 to 77 |
2510 | 2510 | ||
2511 | 7. 8. 9. 10. 12. 1. 2. 3. 4. 5. 6. | 2511 | 7. 8. 9. 10. 12. 1. 2. 3. 4. 5. 6. |
2512 | 2512 | ||
2513 | column 78 to 88 | 2513 | column 78 to 88 |
2514 | 2514 | ||
2515 | 7. 8. 9. 11. 12. 13. 14. 2. 3. 4. 5. | 2515 | 7. 8. 9. 11. 12. 13. 14. 2. 3. 4. 5. |
2516 | 2516 | ||
2517 | column 89 to 98 | 2517 | column 89 to 98 |
2518 | 2518 | ||
2519 | 6. 7. 8. 9. 10. 11. 12. 13. 14. 1. | 2519 | 6. 7. 8. 9. 10. 11. 12. 13. 14. 1. |
2520 | 2520 | ||
2521 | column 99 to 109 | 2521 | column 99 to 109 |
2522 | 2522 | ||
2523 | 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. | 2523 | 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. |
2524 | 2524 | ||
2525 | column 110 | 2525 | column 110 |
2526 | 2526 | ||
2527 | 13. | 2527 | 13. |
2528 | 2528 | ||
2529 | g1(7) | 2529 | g1(7) |
2530 | 2530 | ||
2531 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ! | 2531 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ! |
2532 | 2532 | ||
2533 | g1(8) | 2533 | g1(8) |
2534 | 2534 | ||
2535 | [] | 2535 | [] |
2536 | 2536 | ||
2537 | g1(9) | 2537 | g1(9) |
2538 | 2538 | ||
2539 | [] | 2539 | [] |
2540 | 2540 | ||
2541 | g1(10) | 2541 | g1(10) |
2542 | 2542 | ||
2543 | [] | 2543 | [] |
2544 | 2544 | ||
2545 | g1(11) | 2545 | g1(11) |
2546 | 2546 | ||
2547 | [] | 2547 | [] |
2548 | 2548 | ||
2549 | g1(12) | 2549 | g1(12) |
2550 | 2550 | ||
2551 | [] | 2551 | [] |
2552 | 2552 | ||
2553 | g1(13) | 2553 | g1(13) |
2554 | 2554 | ||
2555 | [] | 2555 | [] |
2556 | 2556 | ||
2557 | g1(14) | 2557 | g1(14) |
2558 | 2558 | ||
2559 | [] | 2559 | [] |
2560 | 2560 | ||
2561 | g1(15) | 2561 | g1(15) |
2562 | 2562 | ||
2563 | [] | 2563 | [] |
2564 | 2564 | ||
2565 | g1(16) | 2565 | g1(16) |
2566 | 2566 | ||
2567 | 2567 | ||
2568 | column 1 to 19 | 2568 | column 1 to 19 |
2569 | 2569 | ||
2570 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ! | 2570 | !1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ! |
2571 | 2571 | ||
2572 | column 20 to 36 | 2572 | column 20 to 36 |
2573 | 2573 | ||
2574 | !20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ! | 2574 | !20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ! |
2575 | 2575 | ||
2576 | column 37 to 53 | 2576 | column 37 to 53 |
2577 | 2577 | ||
2578 | !37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ! | 2578 | !37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ! |
2579 | 2579 | ||
2580 | column 54 to 70 | 2580 | column 54 to 70 |
2581 | 2581 | ||
2582 | !54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ! | 2582 | !54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ! |
2583 | 2583 | ||
2584 | column 71 to 87 | 2584 | column 71 to 87 |
2585 | 2585 | ||
2586 | !71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ! | 2586 | !71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ! |
2587 | 2587 | ||
2588 | column 88 to 103 | 2588 | column 88 to 103 |
2589 | 2589 | ||
2590 | !88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 ! | 2590 | !88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 ! |
2591 | 2591 | ||
2592 | column 104 to 110 | 2592 | column 104 to 110 |
2593 | 2593 | ||
2594 | !104 105 106 107 108 109 110 ! | 2594 | !104 105 106 107 108 109 110 ! |
2595 | 2595 | ||
2596 | g1(17) | 2596 | g1(17) |
2597 | 2597 | ||
2598 | 2598 | ||
2599 | column 1 to 11 | 2599 | column 1 to 11 |
2600 | 2600 | ||
2601 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2601 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2602 | 2602 | ||
2603 | column 12 to 22 | 2603 | column 12 to 22 |
2604 | 2604 | ||
2605 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2605 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2606 | 2606 | ||
2607 | column 23 to 33 | 2607 | column 23 to 33 |
2608 | 2608 | ||
2609 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2609 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2610 | 2610 | ||
2611 | column 34 to 44 | 2611 | column 34 to 44 |
2612 | 2612 | ||
2613 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2613 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2614 | 2614 | ||
2615 | column 45 to 55 | 2615 | column 45 to 55 |
2616 | 2616 | ||
2617 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2617 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2618 | 2618 | ||
2619 | column 56 to 66 | 2619 | column 56 to 66 |
2620 | 2620 | ||
2621 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2621 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2622 | 2622 | ||
2623 | column 67 to 77 | 2623 | column 67 to 77 |
2624 | 2624 | ||
2625 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2625 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2626 | 2626 | ||
2627 | column 78 to 88 | 2627 | column 78 to 88 |
2628 | 2628 | ||
2629 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2629 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2630 | 2630 | ||
2631 | column 89 to 99 | 2631 | column 89 to 99 |
2632 | 2632 | ||
2633 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2633 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2634 | 2634 | ||
2635 | column 100 to 110 | 2635 | column 100 to 110 |
2636 | 2636 | ||
2637 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2637 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2638 | 2638 | ||
2639 | g1(18) | 2639 | g1(18) |
2640 | 2640 | ||
2641 | 2641 | ||
2642 | column 1 to 11 | 2642 | column 1 to 11 |
2643 | 2643 | ||
2644 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2644 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2645 | 2645 | ||
2646 | column 12 to 22 | 2646 | column 12 to 22 |
2647 | 2647 | ||
2648 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2648 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2649 | 2649 | ||
2650 | column 23 to 33 | 2650 | column 23 to 33 |
2651 | 2651 | ||
2652 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2652 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2653 | 2653 | ||
2654 | column 34 to 44 | 2654 | column 34 to 44 |
2655 | 2655 | ||
2656 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2656 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2657 | 2657 | ||
2658 | column 45 to 55 | 2658 | column 45 to 55 |
2659 | 2659 | ||
2660 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2660 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2661 | 2661 | ||
2662 | column 56 to 66 | 2662 | column 56 to 66 |
2663 | 2663 | ||
2664 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2664 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2665 | 2665 | ||
2666 | column 67 to 77 | 2666 | column 67 to 77 |
2667 | 2667 | ||
2668 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2668 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2669 | 2669 | ||
2670 | column 78 to 88 | 2670 | column 78 to 88 |
2671 | 2671 | ||
2672 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2672 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2673 | 2673 | ||
2674 | column 89 to 99 | 2674 | column 89 to 99 |
2675 | 2675 | ||
2676 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2676 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2677 | 2677 | ||
2678 | column 100 to 110 | 2678 | column 100 to 110 |
2679 | 2679 | ||
2680 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2680 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |
2681 | 2681 | ||
2682 | g1(19) | 2682 | g1(19) |
2683 | 2683 | ||
2684 | 2684 | ||
2685 | column 1 to 11 | 2685 |